Suppr超能文献

通过半监督张量分解进行表型分析(PSST)。

Phenotyping through Semi-Supervised Tensor Factorization (PSST).

作者信息

Henderson Jette, He Huan, Malin Bradley A, Denny Joshua C, Kho Abel N, Ghosh Joydeep, Ho Joyce C

机构信息

The University of Texas at Austin, Austin, TX.

Emory University, Atlanta, GA.

出版信息

AMIA Annu Symp Proc. 2018 Dec 5;2018:564-573. eCollection 2018.

Abstract

A computational phenotype is a set of clinically relevant and interesting characteristics that describe patients with a given condition. Various machine learning methods have been proposed to derive phenotypes in an automatic, high-throughput manner. Among these methods, computational phenotyping through tensor factorization has been shown to produce clinically interesting phenotypes. However, few of these methods incorporate auxiliary patient information into the phenotype derivation process. In this work, we introduce Phenotyping through Semi-Supervised Tensor Factorization (PSST), a method that leverages disease status knowledge about subsets of patients to generate computational phenotypes from tensors constructed from the electronic health records of patients. We demonstrate the potential of PSST to uncover predictive and clinically interesting computational phenotypes through case studies focusing on type-2 diabetes and resistant hypertension. PSST yields more discriminative phenotypes compared to the unsupervised methods and more meaningful phenotypes compared to a supervised method.

摘要

计算表型是一组描述特定疾病患者的临床相关且有趣的特征。已经提出了各种机器学习方法来以自动、高通量的方式推导表型。在这些方法中,通过张量分解进行的计算表型分析已被证明可以产生具有临床意义的表型。然而,这些方法中很少有将辅助患者信息纳入表型推导过程的。在这项工作中,我们引入了通过半监督张量分解进行表型分析(PSST),这是一种利用关于患者子集的疾病状态知识从患者电子健康记录构建的张量中生成计算表型的方法。我们通过聚焦2型糖尿病和顽固性高血压的案例研究证明了PSST揭示预测性和具有临床意义的计算表型的潜力。与无监督方法相比,PSST产生的表型更具区分性,与监督方法相比,产生的表型更有意义。

相似文献

10
Natural Language Processing for EHR-Based Computational Phenotyping.基于电子健康记录的自然语言处理计算表型。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153. doi: 10.1109/TCBB.2018.2849968. Epub 2018 Jun 25.

引用本文的文献

本文引用的文献

2
High-fidelity phenotyping: richness and freedom from bias.高保真表型分析:丰富性与无偏性
J Am Med Inform Assoc. 2018 Mar 1;25(3):289-294. doi: 10.1093/jamia/ocx110.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验