Suppr超能文献

语言系统的进化动态。

Evolutionary dynamics of language systems.

机构信息

ARC Centre of Excellence for the Dynamics of Language, Australian National University, Canberra, ACT 0200, Australia;

Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.

出版信息

Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8822-E8829. doi: 10.1073/pnas.1700388114. Epub 2017 Oct 4.

Abstract

Understanding how and why language subsystems differ in their evolutionary dynamics is a fundamental question for historical and comparative linguistics. One key dynamic is the rate of language change. While it is commonly thought that the rapid rate of change hampers the reconstruction of deep language relationships beyond 6,000-10,000 y, there are suggestions that grammatical structures might retain more signal over time than other subsystems, such as basic vocabulary. In this study, we use a Dirichlet process mixture model to infer the rates of change in lexical and grammatical data from 81 Austronesian languages. We show that, on average, most grammatical features actually change faster than items of basic vocabulary. The grammatical data show less schismogenesis, higher rates of homoplasy, and more bursts of contact-induced change than the basic vocabulary data. However, there is a core of grammatical and lexical features that are highly stable. These findings suggest that different subsystems of language have differing dynamics and that careful, nuanced models of language change will be needed to extract deeper signal from the noise of parallel evolution, areal readaptation, and contact.

摘要

理解语言子系统在进化动态方面的差异是历史和比较语言学的一个基本问题。一个关键的动态是语言变化的速度。虽然人们普遍认为快速的变化速度会阻碍对超过 6000-10000 年的深层语言关系的重建,但也有一些观点认为,语法结构可能比其他子系统(如基本词汇)保留更多的信号。在这项研究中,我们使用狄利克雷过程混合模型来推断 81 种南岛语系语言中词汇和语法数据的变化速度。我们发现,平均而言,大多数语法特征实际上比基本词汇中的项目变化得更快。语法数据显示出较少的分歧,更高的同形异义率,以及比基本词汇数据更多的接触诱导变化的爆发。然而,有一组语法和词汇特征是高度稳定的。这些发现表明,语言的不同子系统具有不同的动态,需要仔细、细致的语言变化模型来从平行进化、地域适应和接触的噪声中提取更深层次的信号。

相似文献

1
Evolutionary dynamics of language systems.语言系统的进化动态。
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8822-E8829. doi: 10.1073/pnas.1700388114. Epub 2017 Oct 4.
5
The shape and tempo of language evolution.语言进化的形态和节奏。
Proc Biol Sci. 2010 Aug 22;277(1693):2443-50. doi: 10.1098/rspb.2010.0051. Epub 2010 Apr 7.
6
The deep history of the number words.数字词汇的深远历史。
Philos Trans R Soc Lond B Biol Sci. 2017 Feb 19;373(1740). doi: 10.1098/rstb.2016.0517.
8
A Proposed Neurological Interpretation of Language Evolution.一种关于语言进化的神经学解释提议
Behav Neurol. 2015;2015:872487. doi: 10.1155/2015/872487. Epub 2015 Jun 1.

引用本文的文献

9
Expansion and evolution of the R programming language.R编程语言的扩展与演进。
R Soc Open Sci. 2023 Apr 12;10(4):221550. doi: 10.1098/rsos.221550. eCollection 2023 Apr.

本文引用的文献

1
Rate of language evolution is affected by population size.语言演变的速度受人口规模的影响。
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2097-102. doi: 10.1073/pnas.1419704112. Epub 2015 Feb 2.
2
BEAST 2: a software platform for Bayesian evolutionary analysis.BEAST 2:用于贝叶斯进化分析的软件平台。
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537. doi: 10.1371/journal.pcbi.1003537. eCollection 2014 Apr.
3
Ultraconserved words point to deep language ancestry across Eurasia.超保守词语指向欧亚大陆的深远语言渊源。
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8471-6. doi: 10.1073/pnas.1218726110. Epub 2013 May 6.
9
On the shape and fabric of human history.论人类历史的形态与结构。
Philos Trans R Soc Lond B Biol Sci. 2010 Dec 12;365(1559):3923-33. doi: 10.1098/rstb.2010.0162.
10
The shape and tempo of language evolution.语言进化的形态和节奏。
Proc Biol Sci. 2010 Aug 22;277(1693):2443-50. doi: 10.1098/rspb.2010.0051. Epub 2010 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验