Suppr超能文献

哺乳动物转录因子网络:探究生物复杂性的最新进展。

Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity.

机构信息

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.

Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.

出版信息

Cell Syst. 2017 Oct 25;5(4):319-331. doi: 10.1016/j.cels.2017.07.004.

Abstract

Transcription factor (TF) networks are a key determinant of cell fate decisions in mammalian development and adult tissue homeostasis and are frequently corrupted in disease. However, our inability to experimentally resolve and interrogate the complexity of mammalian TF networks has hampered the progress in this field. Recent technological advances, in particular large-scale genome-wide approaches, single-cell methodologies, live-cell imaging, and genome editing, are emerging as important technologies in TF network biology. Several recent studies even suggest a need to re-evaluate established models of mammalian TF networks. Here, we provide a brief overview of current and emerging methods to define mammalian TF networks. We also discuss how these emerging technologies facilitate new ways to interrogate complex TF networks, consider the current open questions in the field, and comment on potential future directions and biomedical applications.

摘要

转录因子 (TF) 网络是哺乳动物发育和成人组织稳态中细胞命运决定的关键决定因素,并且在疾病中经常被破坏。然而,我们无法通过实验来解决和探究哺乳动物 TF 网络的复杂性,这阻碍了该领域的进展。最近的技术进步,特别是大规模全基因组方法、单细胞方法、活细胞成像和基因组编辑,正在成为 TF 网络生物学中的重要技术。最近的几项研究甚至表明,有必要重新评估哺乳动物 TF 网络的现有模型。在这里,我们简要概述了当前和新兴的方法来定义哺乳动物 TF 网络。我们还讨论了这些新兴技术如何为探究复杂的 TF 网络提供新的方法,考虑该领域当前的开放性问题,并评论潜在的未来方向和生物医学应用。

相似文献

5
ITFP: an integrated platform of mammalian transcription factors.ITFP:哺乳动物转录因子的综合平台。
Bioinformatics. 2008 Oct 15;24(20):2416-7. doi: 10.1093/bioinformatics/btn439. Epub 2008 Aug 19.

引用本文的文献

8
Gene regulatory networks in disease and ageing.疾病和衰老中的基因调控网络。
Nat Rev Nephrol. 2024 Sep;20(9):616-633. doi: 10.1038/s41581-024-00849-7. Epub 2024 Jun 12.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验