Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
Spectroscopy Department, Institute of Physics Research, National Research Centre, Cairo 12622, Egypt.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2311374121. doi: 10.1073/pnas.2311374121. Epub 2024 Apr 22.
The control of eukaryotic gene expression is intimately connected to highly dynamic chromatin structures. Gene regulation relies on activator and repressor transcription factors (TFs) that induce local chromatin opening and closing. However, it is unclear how nucleus-wide chromatin organization responds dynamically to the activity of specific TFs. Here, we examined how two TFs with opposite effects on local chromatin accessibility modulate chromatin dynamics nucleus-wide. We combine high-resolution diffusion mapping and dense flow reconstruction and correlation in living cells to obtain an imaging-based, nanometer-scale analysis of local diffusion processes and long-range coordinated movements of both chromatin and TFs. We show that the expression of either an individual transcriptional activator (CDX2) or repressor (SIX6) with large numbers of binding sites increases chromatin mobility nucleus-wide, yet they induce opposite coherent chromatin motions at the micron scale. Hi-C analysis of higher-order chromatin structures shows that induction of the pioneer factor CDX2 leads both to changes in local chromatin interactions and the distribution of A and B compartments, thus relating the micromovement of chromatin with changes in compartmental structures. Given that inhibition of transcription initiation and elongation by RNA Pol II has a partial impact on the global chromatin dynamics induced by CDX2, we suggest that CDX2 overexpression alters chromatin structure dynamics both dependently and independently of transcription. Our biophysical analysis shows that sequence-specific TFs can influence chromatin structure on multiple architectural levels, arguing that local chromatin changes brought by TFs alter long-range chromatin mobility and its organization.
真核基因表达的调控与高度动态的染色质结构密切相关。基因调控依赖于激活子和阻遏子转录因子(TFs),它们诱导局部染色质的打开和关闭。然而,目前尚不清楚整个细胞核范围内的染色质组织如何对特定 TF 的活性进行动态响应。在这里,我们研究了两种对局部染色质可及性具有相反影响的 TF 如何在整个细胞核范围内调节染色质动力学。我们结合高分辨率扩散映射和密集流重建和相关在活细胞中,以获得基于成像的、纳米尺度的局部扩散过程和染色质和 TF 的长程协调运动的分析。我们表明,大量结合位点的单个转录激活因子(CDX2)或阻遏子(SIX6)的表达都会增加整个细胞核范围内的染色质流动性,但它们在微米尺度上诱导相反的相干染色质运动。更高阶染色质结构的 Hi-C 分析表明,先驱因子 CDX2 的诱导不仅导致局部染色质相互作用和 A 和 B 区室分布的变化,从而将染色质的微运动与区室结构的变化联系起来。鉴于 RNA Pol II 对转录起始和延伸的抑制对 CDX2 诱导的整个染色质动力学仅有部分影响,我们认为 CDX2 的过表达改变了染色质结构动力学,这既依赖于转录,也独立于转录。我们的生物物理分析表明,序列特异性 TF 可以在多个结构水平上影响染色质结构,这表明 TF 带来的局部染色质变化改变了长程染色质的流动性及其组织。