University of Liѐge, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, -B52/3 Sart-Tilman, 4000 Liѐge, Belgium.
University of Liѐge, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, -B52/3 Sart-Tilman, 4000 Liѐge, Belgium.
Sci Total Environ. 2018 Apr 15;621:1415-1432. doi: 10.1016/j.scitotenv.2017.10.086. Epub 2017 Oct 23.
This work reviews applications of stable isotope analysis to the studies of transport and transformation of N species in groundwater under agricultural areas. It summarizes evidence regarding factors affecting the isotopic composition of NO, NH and NO in subsurface, and discusses the use of B, O, C, S, Sr/Sr isotopes to support the analysis of δN values. The isotopic composition of NO, NH and NO varies depending on their sources and dynamics of N cycle processes. The reported δN-NO values for sources of NO are: soil organic N - +3‰-+8‰, mineral fertilizers - -8‰-+7‰; manure/household waste - +5‰ to +35‰. For NH sources, the isotopic signature ranges are: organic matter - +2.4-+4.1‰, rainwater - -13.4-+2.3‰, mineral fertilizers - -7.4-+5.1‰, household waste - +5-+9‰; animal manure - +8-+11‰. For NO, isotopic composition depends on isotopic signatures of substrate pools and reaction rates. δN values of NO are influenced by fractionation effects occurring during denitrification (ɛ=5-40‰), nitrification (ɛ=5-35‰) and DNRA (ɛ not reported). The isotopic signature of NH is also affected by nitrification and DNRA as well as mineralization (ɛ=1‰), sorption (ɛ=1-8‰), anammox (ɛ=4.3-7.4‰) and volatilization (ɛ=25‰). As for the NO, production of NO leads to its depletion in N, whereas consumption - to enrichment in N. The magnitude of fractionation effects occurring during the considered processes depends on temperature, pH, DO, C/NO ratio, size of the substrate pool, availability of electron donors, water content in subsoil, residence time, land use, hydrogeology. While previous studies have accumulated rich data on isotopic composition of NO in groundwater, evidence remains scarce in the cases of NH and NO. Further research is required to consider variability of δN-NH and δN-NO in groundwater across agricultural ecosystems.
本研究综述了稳定同位素分析在农业区地下水氮素物种迁移转化研究中的应用。总结了影响地下水中 NO、NH 和 NO 同位素组成因素的证据,并讨论了 B、O、C、S、Sr/Sr 同位素在支持 δN 值分析中的应用。NO、NH 和 NO 的同位素组成取决于其来源和氮循环过程的动力学。已报道的 NO 来源的 δN-NO 值为:土壤有机氮为+3‰-+8‰,矿物肥料为-8‰-+7‰;粪肥/家庭废物为+5‰至+35‰。对于 NH 来源,同位素特征范围为:有机物为+2.4-+4.1‰,雨水为-13.4-+2.3‰,矿物肥料为-7.4-+5.1‰,家庭废物为+5-+9‰;动物粪肥为+8-+11‰。对于 NO,同位素组成取决于基质池的同位素特征和反应速率。NO 的 δN 值受反硝化(ɛ=5-40‰)、硝化(ɛ=5-35‰)和 DNRA(未报告 ɛ)过程中发生的分馏效应影响。NH 的同位素特征也受硝化和 DNRA 以及矿化(ɛ=1‰)、吸附(ɛ=1-8‰)、厌氧氨氧化(ɛ=4.3-7.4‰)和挥发(ɛ=25‰)的影响。对于 NO,其生成导致 N 消耗,而消耗导致 N 富集。在考虑的过程中发生的分馏效应的大小取决于温度、pH、DO、C/NO 比、基质池的大小、电子供体的可用性、亚土层的含水量、停留时间、土地利用、水文地质。虽然先前的研究积累了丰富的地下水 NO 同位素组成数据,但 NH 和 NO 的证据仍然很少。需要进一步研究以考虑农业生态系统中地下水 NH 和 NO 的 δN-NH 和 δN-NO 的变异性。