Rahman Md Motiar, Matsumura Shigeyoshi, Ikawa Yoshiya
Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 9308555, Japan.
Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 9308555, Japan.
Biology (Basel). 2017 Oct 30;6(4):37. doi: 10.3390/biology6040037.
A bimolecular ribozyme consisting of a core ribozyme (ΔP5 RNA) and an activator module (P5abc RNA) has been used as a platform to design assembled RNA nanostructures. The tight and specific assembly between the P5abc and ΔP5 modules depends on two sets of intermodule interactions. The interface between P5abc and ΔP5 must be controlled when designing RNA nanostructures. To expand the repertoire of molecular recognition in the P5abc/ΔP5 interface, we modified the interface by replacing the parent tertiary interactions in the interface with artificial interactions. The engineered P5abc/ΔP5 interfaces were characterized biochemically to identify those suitable for nanostructure design. The new interfaces were used to construct 2D-square and 1D-array RNA nanostructures.
一种由核心核酶(ΔP5 RNA)和激活模块(P5abc RNA)组成的双分子核酶已被用作设计组装RNA纳米结构的平台。P5abc和ΔP5模块之间紧密且特异的组装取决于两组模块间相互作用。在设计RNA纳米结构时,必须控制P5abc和ΔP5之间的界面。为了扩展P5abc/ΔP5界面处的分子识别范围,我们通过用人工相互作用取代界面处的亲本三级相互作用来修饰该界面。对工程化的P5abc/ΔP5界面进行了生化表征,以鉴定那些适合纳米结构设计的界面。这些新界面被用于构建二维方形和一维阵列RNA纳米结构。