Suppr超能文献

用于肺部放射治疗的有限角度分次内验证(LIVE)系统的图像采集优化

Image acquisition optimization of a limited-angle intrafraction verification (LIVE) system for lung radiotherapy.

作者信息

Zhang Yawei, Deng Xinchen, Yin Fang-Fang, Ren Lei

机构信息

Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, NC, 27710, USA.

Medical Physics Graduate Program, Duke Kunshan University, No. 8 Duke Avenue, Kunshan, Jiangsu, 215316, China.

出版信息

Med Phys. 2018 Jan;45(1):340-351. doi: 10.1002/mp.12647. Epub 2017 Nov 30.

Abstract

PURPOSE

Limited-angle intrafraction verification (LIVE) has been previously developed for four-dimensional (4D) intrafraction target verification either during arc delivery or between three-dimensional (3D)/IMRT beams. Preliminary studies showed that LIVE can accurately estimate the target volume using kV/MV projections acquired over orthogonal view 30° scan angles. Currently, the LIVE imaging acquisition requires slow gantry rotation and is not clinically optimized. The goal of this study is to optimize the image acquisition parameters of LIVE for different patient respiratory periods and gantry rotation speeds for the effective clinical implementation of the system.

METHOD

Limited-angle intrafraction verification imaging acquisition was optimized using a digital anthropomorphic phantom (XCAT) with simulated respiratory periods varying from 3 s to 6 s and gantry rotation speeds varying from 1°/s to 6°/s. LIVE scanning time was optimized by minimizing the number of respiratory cycles needed for the four-dimensional scan, and imaging dose was optimized by minimizing the number of kV and MV projections needed for four-dimensional estimation. The estimation accuracy was evaluated by calculating both the center-of-mass-shift (COMS) and three-dimensional volume-percentage-difference (VPD) between the tumor in estimated images and the ground truth images. The robustness of LIVE was evaluated with varied respiratory patterns, tumor sizes, and tumor locations in XCAT simulation. A dynamic thoracic phantom (CIRS) was used to further validate the optimized imaging schemes from XCAT study with changes of respiratory patterns, tumor sizes, and imaging scanning directions.

RESULTS

Respiratory periods, gantry rotation speeds, number of respiratory cycles scanned and number of kV/MV projections acquired were all positively correlated with the estimation accuracy of LIVE. Faster gantry rotation speed or longer respiratory period allowed less respiratory cycles to be scanned and less kV/MV projections to be acquired to estimate the target volume accurately. Regarding the scanning time minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2°/s, 3-6°/s required scanning of five, four, and three respiratory cycles, respectively. For patient respiratory periods of 5-6 s, the corresponding respiratory cycles required in the scan changed to four, three, and two cycles, respectively. Regarding the imaging dose minimization, for patient respiratory periods of 3-4 s, gantry rotation speeds of 1°/s, 2-4°/s, 5-6°/s required acquiring of 7, 5, 4 kV and MV projections, respectively. For patient respiratory periods of 5-6 s, 5 kV and 5 MV projections are sufficient for all gantry rotation speeds. The optimized LIVE system was robust against breathing pattern, tumor size and tumor location changes. In the CIRS study, the optimized LIVE system achieved the average center-of-mass-shift (COMS)/volume-percentage-difference (VPD) of 0.3 ± 0.1 mm/7.7 ± 2.0% for the scanning time priority case, 0.2 ± 0.1 mm/6.1 ± 1.2% for the imaging dose priority case, respectively, among all gantry rotation speeds tested. LIVE was robust against different scanning directions investigated.

CONCLUSION

The LIVE system has been preliminarily optimized for different patient respiratory periods and treatment gantry rotation speeds using digital and physical phantoms. The optimized imaging parameters, including number of respiratory cycles scanned and kV/MV projection numbers acquired, provide guidelines for optimizing the scanning time and imaging dose of the LIVE system for its future evaluations and clinical implementations through patient studies.

摘要

目的

有限角度分次内验证(LIVE)先前已被开发用于在弧形照射期间或三维(3D)/调强放疗(IMRT)射束之间进行四维(4D)分次内靶区验证。初步研究表明,LIVE可以使用在30°扫描角度的正交视图上采集的千伏/兆伏投影准确估计靶区体积。目前,LIVE成像采集需要缓慢的机架旋转,且未进行临床优化。本研究的目的是针对不同的患者呼吸周期和机架旋转速度优化LIVE的图像采集参数,以实现该系统的有效临床应用。

方法

使用数字人体模型(XCAT)对有限角度分次内验证成像采集进行优化,模拟呼吸周期从3秒到6秒变化,机架旋转速度从1°/秒到6°/秒变化。通过最小化四维扫描所需的呼吸周期数来优化LIVE扫描时间,并通过最小化四维估计所需的千伏和兆伏投影数来优化成像剂量。通过计算估计图像中的肿瘤与真实图像之间的质心偏移(COMS)和三维体积百分比差异(VPD)来评估估计准确性。在XCAT模拟中,针对不同的呼吸模式、肿瘤大小和肿瘤位置评估LIVE的稳健性。使用动态胸部模型(CIRS)进一步验证XCAT研究中优化的成像方案,包括呼吸模式、肿瘤大小和成像扫描方向的变化。

结果

呼吸周期、机架旋转速度、扫描的呼吸周期数和采集的千伏/兆伏投影数均与LIVE的估计准确性呈正相关。更快的机架旋转速度或更长的呼吸周期允许扫描更少的呼吸周期并采集更少的千伏/兆伏投影以准确估计靶区体积。关于扫描时间的最小化,对于3 - 4秒的患者呼吸周期,1°/秒、2°/秒、3 - 6°/秒的机架旋转速度分别需要扫描5个、4个和3个呼吸周期。对于5 - 6秒的患者呼吸周期,扫描中所需的相应呼吸周期分别变为4个、3个和2个周期。关于成像剂量的最小化,对于3 - 4秒的患者呼吸周期,1°/秒、2 - 4°/秒、5 - 6°/秒的机架旋转速度分别需要采集7个、5个、4个千伏和兆伏投影。对于5 - 6秒的患者呼吸周期,对于所有机架旋转速度,5个千伏和5个兆伏投影就足够了。优化后的LIVE系统对呼吸模式、肿瘤大小和肿瘤位置的变化具有稳健性。在CIRS研究中,对于扫描时间优先的情况,优化后的LIVE系统在所有测试的机架旋转速度下,平均质心偏移(COMS)/体积百分比差异(VPD)为0.3±0.1毫米/7.7±2.0%;对于成像剂量优先的情况,平均质心偏移(COMS)/体积百分比差异(VPD)为0.2±0.1毫米/6.1±1.2%。LIVE对所研究的不同扫描方向具有稳健性。

结论

已使用数字和物理模型针对不同的患者呼吸周期和治疗机架旋转速度对LIVE系统进行了初步优化。优化后的成像参数,包括扫描的呼吸周期数和采集的千伏/兆伏投影数,为通过患者研究优化LIVE系统的扫描时间和成像剂量提供了指导,以便其未来进行评估和临床应用。

相似文献

引用本文的文献

9

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验