Suppr超能文献

使用自适应先验知识减少扫描角度,用于适形弧形放射治疗的有限角度分次内验证(LIVE)系统。

Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy.

作者信息

Zhang Yawei, Yin Fang-Fang, Zhang You, Ren Lei

机构信息

Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, NC 27710, United States of America.

出版信息

Phys Med Biol. 2017 May 7;62(9):3859-3882. doi: 10.1088/1361-6560/aa6913. Epub 2017 Mar 24.

Abstract

The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4  ±  0.1 mm/5.5  ±  2.2%, 0.6  ±  0.3 mm/7.2  ±  2.8%, 0.5  ±  0.2 mm/7.1  ±  2.6%, 0.6  ±  0.2 mm/8.3  ±  2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation, respectively. In the CIRS phantom study, this technique achieved an average tumor COMS/VPD of 0.7  ±  0.1 mm/7.5  ±  1.3% for a 3 cm lesion and 0.6  ±  0.2 mm/11.4  ±  1.5% for a 2 cm lesion in the baseline drift case. The average tumor COMS/VPD were 0.5  ±  0.2 mm/10.8  ±  1.4%, 0.4  ±  0.3 mm/7.3  ±  2.9%, 0.4  ±  0.2 mm/7.4  ±  2.5%, 0.4  ±  0.2 mm/7.3  ±  2.8% for the four real patient breathing signals, respectively. Results demonstrated that the adaptive prior knowledge guided image estimation technique with LIVE system is robust against scanning angle, lesion size, location and scanning direction. It can estimate on-board images accurately with as little as 6 projections in orthogonal-view 3° angle. In conclusion, adaptive prior knowledge guided image reconstruction technique accurately estimates 4D-CBCT images using extremely-limited angle and projections. This technique greatly improves the efficiency and accuracy of LIVE system for ultrafast 4D intrafraction verification of lung SBRT treatments.

摘要

本研究的目的是开发一种自适应先验知识引导的图像估计技术,以减少在用于四维锥形束计算机断层扫描(4D-CBCT)重建的有限角度分次内验证(LIVE)系统中所需的扫描角度。LIVE系统先前已被开发用于在弧形治疗期间实时重建四维体积图像,以进行分次内靶区验证和剂量计算。在本研究中,我们在LIVE中开发了一种自适应约束自由形式变形重建技术,以进一步减少重建4D-CBCT图像所需的扫描角度,从而实现更快的分次内验证。该技术使用具有能量最小化的自由形式变形来使先前图像变形,以便基于在治疗期间以极有限角度(正交3°)获取的千伏-兆伏投影来估计4D-CBCT。请注意,使用LIVE在治疗期间重建的最新CBCT图像对先前图像进行自适应更新,以利用呼吸运动的连续性。使用四维数字扩展心脏躯干(XCAT)体模和CIRS 008A动态胸部体模来评估该技术的有效性。通过计算重建图像和真实机载图像中肿瘤的质心移位(COMS)和三维体积百分比差异(VPD)来评估该技术的重建准确性。还针对扫描角度、病变大小、病变位置、投影采样间隔和扫描方向,使用变化的呼吸信号评估了该技术的性能。在XCAT研究中,使用3°千伏正交视图和门静脉兆伏投影,该技术在基线漂移、幅度变化、相位偏移和患者呼吸信号变化情况下,分别实现了平均肿瘤COMS/VPD为0.4±0.1毫米/5.5±2.2%、0.6±0.3毫米/7.2±2.8%、0.5±0.2毫米/7.1±2.6%、0.6±0.2毫米/8.3±2.4%。在CIRS体模研究中,在基线漂移情况下,对于3厘米病变,该技术实现了平均肿瘤COMS/VPD为0.7±0.1毫米/7.5±1.3%,对于2厘米病变,为0.6±0.2毫米/11.4±1.5%。对于四个真实患者呼吸信号,平均肿瘤COMS/VPD分别为0.5±0.2毫米/10.8±1.4%、0.4±0.3毫米/7.3±2.9%、0.4±0.2毫米/7.4±2.5%、0.4±0.2毫米/7.3±2.8%。结果表明,带有LIVE系统的自适应先验知识引导图像估计技术对扫描角度、病变大小、位置和扫描方向具有鲁棒性。它可以在正交视图3°角度下仅用6个投影准确估计机载图像。总之,自适应先验知识引导图像重建技术使用极有限的角度和投影准确估计4D-CBCT图像。该技术极大地提高了LIVE系统在肺部立体定向体部放疗(SBRT)治疗的超快四维分次内验证中的效率和准确性。

相似文献

3
A limited-angle intrafraction verification (LIVE) system for radiation therapy.
Med Phys. 2014 Feb;41(2):020701. doi: 10.1118/1.4861820.
4
7
Simultaneous motion estimation and image reconstruction (SMEIR) for 4D cone-beam CT.
Med Phys. 2013 Oct;40(10):101912. doi: 10.1118/1.4821099.
9
High-quality four-dimensional cone-beam CT by deforming prior images.
Phys Med Biol. 2013 Jan 21;58(2):231-46. doi: 10.1088/0031-9155/58/2/231. Epub 2012 Dec 21.

引用本文的文献

1
A review on 4D cone-beam CT (4D-CBCT) in radiation therapy: Technical advances and clinical applications.
Med Phys. 2024 Aug;51(8):5164-5180. doi: 10.1002/mp.17269. Epub 2024 Jun 23.
2
Accuracy and Feasibility of Synthetic CT for Lung Adaptive Radiotherapy: A Phantom Study.
Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231218161. doi: 10.1177/15330338231218161.
3
Enhancement of 4-D Cone-Beam Computed Tomography (4D-CBCT) Using a Dual-Encoder Convolutional Neural Network (DeCNN).
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):222-230. doi: 10.1109/trpms.2021.3133510. Epub 2021 Dec 7.
4
Real-time Markerless Tracking of Lung Tumors based on 2-D Fluoroscopy Imaging using Convolutional LSTM.
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):189-199. doi: 10.1109/trpms.2021.3126318. Epub 2021 Nov 13.

本文引用的文献

3
Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
Technol Cancer Res Treat. 2016 Jun;15(3):416-27. doi: 10.1177/1533034615587615. Epub 2015 May 24.
5
Preliminary clinical evaluation of a 4D-CBCT estimation technique using prior information and limited-angle projections.
Radiother Oncol. 2015 Apr;115(1):22-9. doi: 10.1016/j.radonc.2015.02.022. Epub 2015 Mar 26.
6
A limited-angle intrafraction verification (LIVE) system for radiation therapy.
Med Phys. 2014 Feb;41(2):020701. doi: 10.1118/1.4861820.
7
10
X-ray Digital Linear Tomosynthesis Imaging for Artificial Pulmonary Nodule Detection.
J Clin Imaging Sci. 2011;1:16. doi: 10.4103/2156-7514.76694. Epub 2011 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验