Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, 2424 Erwin Road, Suite 101, Durham, North Carolina 27705.
Medical Physics Graduate Program, Duke University, 2424 Erwin Road, Suite 101, Durham, North Carolina 27705.
Med Phys. 2014 Feb;41(2):020701. doi: 10.1118/1.4861820.
Currently, no 3D or 4D volumetric x-ray imaging techniques are available for intrafraction verification of target position during actual treatment delivery or in-between treatment beams, which is critical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments. This study aims to develop a limited-angle intrafraction verification (LIVE) system to use prior information, deformation models, and limited angle kV-MV projections to verify target position intrafractionally.
The LIVE system acquires limited-angle kV projections simultaneously during arc treatment delivery or in-between static 3D/IMRT treatment beams as the gantry moves from one beam to the next. Orthogonal limited-angle MV projections are acquired from the beam's eye view (BEV) exit fluence of arc treatment beam or in-between static beams to provide additional anatomical information. MV projections are converted to kV projections using a linear conversion function. Patient prior planning CT at one phase is used as the prior information, and the on-board patient volume is considered as a deformation of the prior images. The deformation field is solved using the data fidelity constraint, a breathing motion model extracted from the planning 4D-CT based on principal component analysis (PCA) and a free-form deformation (FD) model. LIVE was evaluated using a 4D digital extended cardiac torso phantom (XCAT) and a CIRS 008A dynamic thoracic phantom. In the XCAT study, patient breathing pattern and tumor size changes were simulated from CT to treatment position. In the CIRS phantom study, the artificial target in the lung region experienced both size change and position shift from CT to treatment position. Varian Truebeam research mode was used to acquire kV and MV projections simultaneously during the delivery of a dynamic conformal arc plan. The reconstruction accuracy was evaluated by calculating the 3D volume percentage difference (VPD) and the center of mass (COM) difference of the tumor in the true on-board images and reconstructed images.
In both simulation and phantom studies, LIVE achieved substantially better reconstruction accuracy than reconstruction using PCA or FD deformation model alone. In the XCAT study, the average VPD and COM differences among different patient scenarios for LIVE system using orthogonal 30° scan angles were 4.3% and 0.3 mm when using kV+BEV MV. Reducing scan angle to 15° increased the average VPD and COM differences to 15.1% and 1.7 mm. In the CIRS phantom study, the VPD and COM differences for the LIVE system using orthogonal 30° scan angles were 6.4% and 1.4 mm. Reducing scan angle to 15° increased the VPD and COM differences to 51.9% and 3.8 mm.
The LIVE system has the potential to substantially improve intrafraction target localization accuracy by providing volumetric verification of tumor position simultaneously during arc treatment delivery or in-between static treatment beams. With this improvement, LIVE opens up a new avenue for margin reduction and dose escalation in both fractionated treatments and SRS and SBRT treatments.
目前,在实际治疗递送过程中或在治疗射束之间,没有用于验证靶区位置的 3D 或 4D 容积 X 射线成像技术,这对于立体定向放射外科(SRS)和立体定向体部放射治疗(SBRT)治疗至关重要。本研究旨在开发一种有限角度分次内验证(LIVE)系统,该系统使用先验信息、变形模型和有限角度千伏-兆伏(kV-MV)投影来验证分次内的靶区位置。
LIVE 系统在弧形治疗递送过程中或在静态 3D/调强放射治疗(IMRT)射束之间同时获取有限角度 kV 投影,当机架从一个射束移动到下一个射束时。从弧形治疗射束的束眼视图(BEV)出口剂量或静态射束之间的正交有限角度 MV 投影中获取额外的解剖学信息。MV 投影通过线性转换函数转换为 kV 投影。使用一个相位的患者计划 CT 作为先验信息,并且将机载患者体积视为先验图像的变形。使用数据保真度约束、基于主成分分析(PCA)从计划 4D-CT 提取的呼吸运动模型和自由形式变形(FD)模型来解决变形场。使用 4D 数字扩展心脏胸体模(XCAT)和 CIRS 008A 动态胸部体模对 LIVE 进行了评估。在 XCAT 研究中,从 CT 到治疗位置模拟了患者呼吸模式和肿瘤大小的变化。在 CIRS 体模研究中,肺区的人工目标经历了从 CT 到治疗位置的大小变化和位置偏移。Varian Truebeam 研究模式用于在动态适形弧形计划的递送过程中同时获取 kV 和 MV 投影。通过计算机载图像和重建图像中肿瘤的 3D 体积百分比差异(VPD)和质心(COM)差异来评估重建准确性。
在模拟和体模研究中,与单独使用 PCA 或 FD 变形模型相比,LIVE 实现了显著更好的重建准确性。在 XCAT 研究中,对于使用正交 30°扫描角度的 LIVE 系统,不同患者场景的平均 VPD 和 COM 差异分别为 5%和 0.3 毫米时使用 kV+BEV MV。将扫描角度减小到 15°会将平均 VPD 和 COM 差异增加到 15.1%和 1.7 毫米。在 CIRS 体模研究中,对于使用正交 30°扫描角度的 LIVE 系统,VPD 和 COM 差异分别为 6.4%和 1.4 毫米。将扫描角度减小到 15°会将 VPD 和 COM 差异增加到 51.9%和 3.8 毫米。
LIVE 系统有可能通过在弧形治疗递送过程中或在静态治疗射束之间同时提供肿瘤位置的容积验证,显著提高分次内靶区定位精度。通过这种改进,LIVE 为分割治疗以及 SRS 和 SBRT 治疗中的边缘缩小和剂量升级开辟了新途径。