Suppr超能文献

一种基于模型的类别学习中群体智慧的方法。

A Model-Based Approach to the Wisdom of the Crowd in Category Learning.

作者信息

Danileiko Irina, Lee Michael D

机构信息

Department of Cognitive Sciences, University of California, Irvine.

出版信息

Cogn Sci. 2018 Jun;42 Suppl 3:861-883. doi: 10.1111/cogs.12561. Epub 2017 Nov 2.

Abstract

We apply the "wisdom of the crowd" idea to human category learning, using a simple approach that combines people's categorization decisions by taking the majority decision. We first show that the aggregated crowd category learning behavior found by this method performs well, learning categories more quickly than most or all individuals for 28 previously collected datasets. We then extend the approach so that it does not require people to categorize every stimulus. We do this using a model-based method that predicts the categorization behavior people would produce for new stimuli, based on their behavior with observed stimuli, and uses the majority of these predicted decisions. We demonstrate and evaluate the model-based approach in two case studies. In the first, we use the general recognition theory decision-bound model of categorization (Ashby & Townsend, ) to infer each person's decision boundary for two categories of perceptual stimuli, and we use these inferences to make aggregated predictions about new stimuli. In the second, we use the generalized context model exemplar model of categorization (Nosofsky, ) to infer each person's selective attention for face stimuli, and we use these inferences to make aggregated predictions about withheld stimuli. In both case studies, we show that our method successfully predicts the category of unobserved stimuli, and we emphasize that the aggregated crowd decisions arise from psychologically interpretable processes and parameters. We conclude by discussing extensions and potential real-world applications of the approach.

摘要

我们将“群体智慧”理念应用于人类范畴学习,采用一种简单方法,即通过多数决来整合人们的分类决策。我们首先表明,用这种方法发现的聚合群体范畴学习行为表现良好,对于之前收集的28个数据集,其学习范畴的速度比大多数或所有个体都要快。然后,我们扩展了该方法,使其无需人们对每个刺激进行分类。我们通过一种基于模型的方法来实现这一点,该方法根据人们对已观察刺激的行为,预测他们对新刺激会产生的分类行为,并采用这些预测决策的多数结果。我们在两个案例研究中展示并评估了基于模型的方法。在第一个案例中,我们使用分类的一般识别理论决策边界模型(阿什比和汤森德, )来推断每个人对两类感知刺激的决策边界,并利用这些推断对新刺激进行聚合预测。在第二个案例中,我们使用分类的广义上下文模型范例模型(诺索夫斯基, )来推断每个人对面部刺激的选择性注意,并利用这些推断对保留刺激进行聚合预测。在这两个案例研究中,我们都表明我们的方法成功预测了未观察到的刺激的类别,并强调聚合群体决策源自心理上可解释的过程和参数。最后,我们讨论了该方法的扩展和潜在的现实世界应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验