University Paris Descartes (EA2511), Sorbonne Paris Cité, Paris, France
Dept of Respiratory Medicine, Cochin Hospital, AP-HP, Paris, France.
Eur Respir J. 2017 Nov 2;50(5). doi: 10.1183/13993003.01034-2017. Print 2017 Nov.
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV, dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes.
本研究旨在确定将慢性阻塞性肺疾病(COPD)患者分配到聚类分析确定的临床表型的简单规则。使用聚类分析对来自法国/比利时 COPD 队列的 2409 例 COPD 患者的数据进行分析,从而确定亚组,通过比较 3 年全因死亡率来确定其临床相关性。使用分类回归树(CART)为这些亚组开发一种分配患者的算法。在 COPD 队列协作国际评估(3CIA)计划中的 3651 例患者中测试了该算法。聚类分析确定了 COPD 患者具有不同临床特征的五个亚组(特别是关于呼吸道疾病的严重程度以及心血管合并症和糖尿病的存在)。基于 CART 的算法表明,用于患者分组的变量在仅患有呼吸道疾病的患者(FEV、呼吸困难等级)和患有多种疾病的患者(呼吸困难等级、年龄、FEV 和体重指数)之间有明显差异。将该算法应用于 3CIA 队列证实,它可以识别具有不同临床特征、死亡率(中位数为 4%至 27%)和死亡年龄(中位数为 68 岁至 76 岁)的患者亚组。一个简单的算法,整合了呼吸特征和合并症,可用于识别具有临床相关性的 COPD 表型。