Suppr超能文献

阴离子氧化铈纳米颗粒通过清除活性氧物种来保护植物光合作用免受非生物胁迫。

Anionic Cerium Oxide Nanoparticles Protect Plant Photosynthesis from Abiotic Stress by Scavenging Reactive Oxygen Species.

机构信息

Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States.

出版信息

ACS Nano. 2017 Nov 28;11(11):11283-11297. doi: 10.1021/acsnano.7b05723. Epub 2017 Nov 10.

Abstract

Plant abiotic stress leads to accumulation of reactive oxygen species (ROS) and a consequent decrease in photosynthetic performance. We demonstrate that a plant nanobionics approach of localizing negatively charged, sub-11 nm, spherical cerium oxide nanoparticles (nanoceria) inside chloroplasts in vivo augments ROS scavenging and photosynthesis of Arabidopsis thaliana plants under excess light (2000 μmol m s, 1.5 h), heat (35 °C, 2.5 h), and dark chilling (4 °C, 5 days). Poly(acrylic acid) nanoceria (PNC) with a hydrodynamic diameter (10.3 nm)-lower than the maximum plant cell wall porosity-and negative ζ-potential (-16.9 mV) exhibit significantly higher colocalization (46%) with chloroplasts in leaf mesophyll cells than aminated nanoceria (ANC) (27%) of similar size (12.6 nm) but positive charge (9.7 mV). Nanoceria are transported into chloroplasts via nonendocytic pathways, influenced by the electrochemical gradient of the plasma membrane potential. PNC with a low Ce/Ce ratio (35.0%) reduce leaf ROS levels by 52%, including hydrogen peroxide, superoxide anion, and hydroxyl radicals. For the latter ROS, there is no known plant enzyme scavenger. Plants embedded with these PNC that were exposed to abiotic stress exhibit an increase up to 19% in quantum yield of photosystem II, 67% in carbon assimilation rates, and 61% in Rubisco carboxylation rates relative to plants without nanoparticles. In contrast, PNC with high Ce/Ce ratio (60.8%) increase overall leaf ROS levels and do not protect photosynthesis from oxidative damage during abiotic stress. This study demonstrates that anionic, spherical, sub-11 nm PNC with low Ce/Ce ratio can act as a tool to study the impact of oxidative stress on plant photosynthesis and to protect plants from abiotic stress.

摘要

植物非生物胁迫会导致活性氧(ROS)的积累,从而导致光合作用性能下降。我们证明,通过将带负电荷、小于 11nm 的球形氧化铈纳米粒子(纳米 CeO2)定位于叶绿体内部的植物纳米仿生方法,可增强拟南芥在强光(2000μmol m s,1.5h)、高温(35°C,2.5h)和黑暗冷胁迫(4°C,5d)下的 ROS 清除和光合作用。带负电荷的聚丙烯酸纳米 CeO2(PNC)具有低于植物细胞壁最大孔隙率的水动力直径(10.3nm)和负 ζ-电势(-16.9mV),与类似尺寸(12.6nm)但带正电荷(9.7mV)的氨基纳米 CeO2(ANC)相比,在叶肉细胞的叶绿体中有更高的共定位(46%)。纳米 CeO2 通过非内吞途径进入叶绿体,受质膜电势电化学梯度的影响。Ce/Ce 比率低(35.0%)的 PNC 可将叶片 ROS 水平降低 52%,包括过氧化氢、超氧阴离子和羟基自由基。对于后一种 ROS,没有已知的植物酶清除剂。与没有纳米粒子的植物相比,暴露于非生物胁迫下的嵌入这些 PNC 的植物,其光合作用系统 II 的量子产率增加了 19%,碳同化率增加了 67%,Rubisco 羧化率增加了 61%。相比之下,Ce/Ce 比率高(60.8%)的 PNC 会增加整体叶片 ROS 水平,并且不能在非生物胁迫下保护光合作用免受氧化损伤。本研究表明,带负电荷、球形、Ce/Ce 比率低的亚 11nm PNC 可作为一种工具,用于研究氧化应激对植物光合作用的影响,并保护植物免受非生物胁迫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验