Suppr超能文献

阴离子氧化铈纳米颗粒对植物体内活性氧的催化清除作用

Catalytic Scavenging of Plant Reactive Oxygen Species In Vivo by Anionic Cerium Oxide Nanoparticles.

作者信息

Newkirk Gregory Michael, Wu Honghong, Santana Israel, Giraldo Juan Pablo

机构信息

Department of Botany and Plant Sciences, University of California; Department of Microbiology and Plant Pathology, University of California.

Department of Botany and Plant Sciences, University of California.

出版信息

J Vis Exp. 2018 Aug 26(138):58373. doi: 10.3791/58373.

Abstract

Reactive oxygen species (ROS) accumulation is a hallmark of plant abiotic stress response. ROS play a dual role in plants by acting as signaling molecules at low levels and damaging molecules at high levels. Accumulation of ROS in stressed plants can damage metabolites, enzymes, lipids, and DNA, causing a reduction of plant growth and yield. The ability of cerium oxide nanoparticles (nanoceria) to catalytically scavenge ROS in vivo provides a unique tool to understand and bioengineer plant abiotic stress tolerance. Here, we present a protocol to synthesize and characterize poly (acrylic) acid coated nanoceria (PNC), interface the nanoparticles with plants via leaf lamina infiltration, and monitor their distribution and ROS scavenging in vivo using confocal microscopy. Current molecular tools for manipulating ROS accumulation in plants are limited to model species and require laborious transformation methods. This protocol for in vivo ROS scavenging has the potential to be applied to wild type plants with broad leaves and leaf structure like Arabidopsis thaliana.

摘要

活性氧(ROS)积累是植物非生物胁迫响应的一个标志。ROS在植物中发挥双重作用,在低水平时作为信号分子,在高水平时作为损伤分子。胁迫植物中ROS的积累会损害代谢物、酶、脂质和DNA,导致植物生长和产量下降。氧化铈纳米颗粒(纳米氧化铈)在体内催化清除ROS的能力为理解和生物工程改造植物非生物胁迫耐受性提供了一种独特的工具。在这里,我们提出了一种合成和表征聚(丙烯酸)包覆纳米氧化铈(PNC)的方案,通过叶片渗透使纳米颗粒与植物结合,并使用共聚焦显微镜监测它们在体内的分布和ROS清除情况。目前用于操纵植物中ROS积累的分子工具仅限于模式物种,并且需要繁琐的转化方法。这种体内ROS清除方案有可能应用于具有像拟南芥那样的阔叶和叶片结构的野生型植物。

相似文献

9
Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles.肝素功能化氧化铈纳米粒子的抗血管生成活性。
Biomaterials. 2013 Nov;34(34):8808-18. doi: 10.1016/j.biomaterials.2013.07.083. Epub 2013 Aug 12.

引用本文的文献

4
Plant salt response: Perception, signaling, and tolerance.植物的盐响应:感知、信号传导与耐受性
Front Plant Sci. 2023 Jan 6;13:1053699. doi: 10.3389/fpls.2022.1053699. eCollection 2022.
6
Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance.植物盐胁迫响应与纳米增强植物耐盐性
Front Plant Sci. 2022 Mar 22;13:843994. doi: 10.3389/fpls.2022.843994. eCollection 2022.

本文引用的文献

3
In Vivo Delivery of Nanoparticles into Plant Leaves.纳米颗粒在植物叶片中的体内递送
Curr Protoc Chem Biol. 2017 Dec 14;9(4):269-284. doi: 10.1002/cpch.29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验