Faculty of Electrical Engineering, University of Ljubljana, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
Institute of Radiology, University Medical Center Ljubljana, Zaloška cesta 2, 1000, Ljubljana, Slovenia.
Neuroinformatics. 2018 Jan;16(1):51-63. doi: 10.1007/s12021-017-9348-7.
Quantified volume and count of white-matter lesions based on magnetic resonance (MR) images are important biomarkers in several neurodegenerative diseases. For a routine extraction of these biomarkers an accurate and reliable automated lesion segmentation is required. To objectively and reliably determine a standard automated method, however, creation of standard validation datasets is of extremely high importance. Ideally, these datasets should be publicly available in conjunction with standardized evaluation methodology to enable objective validation of novel and existing methods. For validation purposes, we present a novel MR dataset of 30 multiple sclerosis patients and a novel protocol for creating reference white-matter lesion segmentations based on multi-rater consensus. On these datasets three expert raters individually segmented white-matter lesions, using in-house developed semi-automated lesion contouring tools. Later, the raters revised the segmentations in several joint sessions to reach a consensus on segmentation of lesions. To evaluate the variability, and as quality assurance, the protocol was executed twice on the same MR images, with a six months break. The obtained intra-consensus variability was substantially lower compared to the intra- and inter-rater variabilities, showing improved reliability of lesion segmentation by the proposed protocol. Hence, the obtained reference segmentations may represent a more precise target to evaluate, compare against and also train, the automatic segmentations. To encourage further use and research we will publicly disseminate on our website http://lit.fe.uni-lj.si/tools the tools used to create lesion segmentations, the original and preprocessed MR image datasets and the consensus lesion segmentations.
基于磁共振(MR)图像的脑白质病变的量化体积和计数是几种神经退行性疾病的重要生物标志物。为了常规提取这些生物标志物,需要进行准确可靠的自动病变分割。然而,为了客观可靠地确定标准的自动化方法,创建标准验证数据集极为重要。理想情况下,这些数据集应与标准化评估方法一起公开提供,以便对新方法和现有方法进行客观验证。为了验证目的,我们提出了一个新的多发性硬化症患者的 MR 数据集和一种新的基于多评估者共识的创建参考脑白质病变分割的协议。在这些数据集中,三位专家评估者分别使用内部开发的半自动病变轮廓工具对脑白质病变进行分割。然后,评估者在几个联合会议中修改分割,以达成病变分割的共识。为了评估变异性并作为质量保证,该协议在相同的 MR 图像上执行了两次,两次之间间隔六个月。与个体评估者和评估者之间的变异性相比,获得的一致性内变异性要低得多,这表明所提出的协议可以提高病变分割的可靠性。因此,获得的参考分割可能代表更精确的目标,用于评估、比较和训练自动分割。为了鼓励进一步的使用和研究,我们将在我们的网站 http://lit.fe.uni-lj.si/tools 上公开发布用于创建病变分割的工具、原始和预处理的 MR 图像数据集以及共识病变分割。