Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
Lab Chip. 2017 Dec 5;17(24):4273-4282. doi: 10.1039/c7lc00926g.
Three-dimensional (3D) in vitro models capturing both the structural and dynamic complexity of the in vivo situation are in great demand as an alternative to animal models. Despite tremendous progress in engineering complex tissue/organ models in the past decade, approaches that support the required freedom in design, detail and chemistry for fabricating truly 3D constructs have remained limited. Here, we report a stereolithographic high-resolution 3D printing technique utilizing poly(ethylene glycol) diacrylate (PEGDA, MW 700) to manufacture diffusion-open and mechanically stable hydrogel constructs as self-contained chips, where confined culture volumes are traversed and surrounded by perfusable vascular-like networks. An optimized resin formulation enables printing of hydrogel chips holding perfusable microchannels with a cross-section as small as 100 μm × 100 μm, and the printed microchannels can be steadily perfused for at least one week. In addition, the integration of multiple independently perfusable and structurally stable channel systems further allows for easy combination of different bulk material volumes at exact relative spatial positions. We demonstrate this structural and material flexibility by embedding a highly compliant cell-laden gelatin hydrogel within the confines of a 3D printed resilient PEGDA hydrogel chip of intermediate compliance. Overall, our proposed strategy represents an automated, cost-effective and high resolution technique to manufacture complex 3D constructs containing microfluidic perfusion networks for advanced in vitro models.
作为动物模型的替代方案,人们迫切需要能够同时捕捉体内环境结构和动态复杂性的三维(3D)体外模型。尽管在过去十年中,工程复杂组织/器官模型方面取得了巨大进展,但支持用于制造真正 3D 结构的设计、细节和化学自由度的方法仍然有限。在这里,我们报告了一种利用聚乙二醇二丙烯酸酯(PEGDA,MW 700)的立体光刻高分辨率 3D 打印技术,用于制造扩散开放且机械稳定的水凝胶结构,这些结构作为自包含芯片,其中受限的培养体积被可灌注的类似血管的网络贯穿和包围。优化的树脂配方可用于打印具有可灌注微通道的水凝胶芯片,其横截面小至 100μm×100μm,并且可稳定地灌注打印的微通道至少一周。此外,多个独立可灌注和结构稳定的通道系统的集成进一步允许在精确的相对空间位置处轻松组合不同的体积材料。我们通过将高度顺应性的细胞负载明胶水凝胶嵌入具有中等顺应性的 3D 打印弹性 PEGDA 水凝胶芯片的范围内来证明这种结构和材料的灵活性。总的来说,我们提出的策略代表了一种自动化、具有成本效益和高分辨率的技术,可用于制造包含微流控灌注网络的复杂 3D 结构,以用于先进的体外模型。