Department of Physics, Sogang University, Seoul, 04107, Korea.
Korea Institute for Advanced Study, Seoul, 02455, Korea.
Nat Commun. 2017 Nov 8;8(1):1370. doi: 10.1038/s41467-017-01487-3.
Layered materials such as graphite and transition metal dichalcogenides have extremely anisotropic mechanical properties owing to orders of magnitude difference between in-plane and out-of-plane interatomic interaction strengths. Although effects of mechanical perturbations on either intralayer or interlayer interactions have been extensively investigated, mutual correlations between them have rarely been addressed. Here, we show that layered materials have an inevitable coupling between in-plane uniaxial strain and interlayer shear. Because of this, the uniaxial in-plane strain induces an anomalous splitting of the degenerate interlayer shear phonon modes such that the split shear mode along the tensile strain is not softened but hardened contrary to the case of intralayer phonon modes. We confirm the effect by measuring Raman shifts of shear modes of bilayer MoS under strain. Moreover, by analyzing the splitting, we obtain an unexplored off-diagonal elastic constant, demonstrating that Raman spectroscopy can determine almost all mechanical constants of layered materials.
层状材料(如石墨和过渡金属二卤化物)具有极高的各向异性机械性能,这是由于面内和面外原子间相互作用强度之间存在数量级的差异。尽管已经广泛研究了机械扰动对层内或层间相互作用的影响,但它们之间的相互关系很少被涉及。在这里,我们表明层状材料在面内单轴应变和层间剪切之间存在不可避免的耦合。正因为如此,面内单轴应变导致简并的层间剪切声子模式发生异常劈裂,使得沿拉伸应变的分裂剪切模式不仅没有软化,反而变硬,与层内声子模式的情况相反。我们通过测量应变下双层 MoS 中的剪切模式的 Raman 位移来证实这一效应。此外,通过分析劈裂,我们得到了一个尚未被探索的非对角弹性常数,表明 Raman 光谱可以确定层状材料的几乎所有力学常数。