Schaffer-Smith Danica, Swenson Jennifer J, Barbaree Blake, Reiter Matthew E
Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
Point Blue Conservation Science, Petaluma, CA 94954, USA.
Remote Sens Environ. 2017 May;193:180-192. doi: 10.1016/j.rse.2017.02.016. Epub 2017 Mar 14.
Satellite measurements of surface water offer promise for understanding wetland habitat availability at broad spatial and temporal scales; reliable habitat is crucial for the persistence of migratory shorebirds that depend on wetland networks. We analyzed water extent dynamics within wetland habitats at a globally important shorebird stopover site for a 1983-2015 Landsat time series, and evaluated the effect of climate on water extent. A range of methods can detect open water from imagery, including supervised classification approaches and thresholds for spectral bands and indices. Thresholds provide a time advantage; however, there is no universally superior index, nor single best threshold for all instances. We used random forest to model the presence or absence of water from >6200 reference pixels, and derived an optimal water probability threshold for our study area using receiver operating characteristic curves. An optimized mid-infrared (1.5-1.7 μm) threshold identified open water in the Sacramento Valley of California at 30-m resolution with an average of 90% producer's accuracy, comparable to approaches that require more intensive user input. SLC-off Landsat 7 imagery was integrated by applying a customized interpolation that mapped water in missing data gaps with 99% user's accuracy. On average we detected open water on 26000 ha (3% of the study area) in early April at the peak of shorebird migration, while water extent increased five-fold after the migration rush. Over the last three decades, late March water extent declined by ~1300 ha per year, primarily due to changes in the extent and timing of agricultural flood-irrigation. Water within shorebird habitats was significantly associated with an index of water availability at the peak of migration. Our approach can be used to optimize thresholds for time series analysis and near-real-time mapping in other regions, and requires only marginally more time than generating a confusion matrix.
对地表水的卫星测量为在广泛的空间和时间尺度上理解湿地栖息地的可利用性提供了希望;可靠的栖息地对于依赖湿地网络的迁徙滨鸟的生存至关重要。我们分析了1983 - 2015年陆地卫星时间序列中一个全球重要的滨鸟中途停歇地湿地栖息地内的水域范围动态,并评估了气候对水域范围的影响。一系列方法可从图像中检测开阔水域,包括监督分类方法以及光谱波段和指数的阈值。阈值具有时间优势;然而,不存在普遍优越的指数,也没有适用于所有情况的单一最佳阈值。我们使用随机森林对6200多个参考像素的水域存在与否进行建模,并利用接收者操作特征曲线为我们的研究区域得出最佳水概率阈值。一个优化的中红外(1.5 - 1.7μm)阈值在加利福尼亚州萨克拉门托山谷以30米分辨率识别开阔水域,生产者精度平均为90%,与需要更多用户密集输入的方法相当。通过应用定制插值对陆地卫星7号扫描线校正中断(SLC-off)图像进行整合,该插值以99%的用户精度绘制缺失数据间隙中的水域。在滨鸟迁徙高峰期的4月初,我们平均在约26000公顷(约占研究区域的3%)检测到开阔水域,而在迁徙高峰过后水域范围增加了五倍。在过去三十年中,3月下旬的水域范围每年减少约1300公顷,主要是由于农业 flood-irrigation 的范围和时间变化。滨鸟栖息地内的水域与迁徙高峰期的水可利用性指数显著相关。我们的方法可用于优化其他区域时间序列分析和近实时制图的阈值,并且只比生成混淆矩阵多花费一点时间。