Suppr超能文献

相对结合自由能能否预测可逆共价抑制剂的选择性?

Can Relative Binding Free Energy Predict Selectivity of Reversible Covalent Inhibitors?

机构信息

College of Pharmacy, Western University of Health Sciences , Pomona, California 91766, United States.

Graduate College of Biomedical Sciences, Western University of Health Sciences , Pomona, California 91766, United States.

出版信息

J Am Chem Soc. 2017 Dec 13;139(49):17945-17952. doi: 10.1021/jacs.7b08938. Epub 2017 Nov 29.

Abstract

Reversible covalent inhibitors have many clinical advantages over noncovalent or irreversible covalent drugs. However, apart from selecting a warhead, substantial efforts in design and synthesis are needed to optimize noncovalent interactions to improve target-selective binding. Computational prediction of binding affinity for reversible covalent inhibitors presents a unique challenge since the binding process consists of multiple steps, which are not necessarily independent of each other. In this study, we lay out the relation between relative binding free energy and the overall reversible covalent binding affinity using a two-state binding model. To prove the concept, we employed free energy perturbation (FEP) coupled with λ-exchange molecular dynamics method to calculate the binding free energy of a series of α-ketoamide analogues relative to a common warhead scaffold, in both noncovalent and covalent binding states, and for two highly homologous proteases, calpain-1 and calpain-2. We conclude that covalent binding state alone, in general, can be used to predict reversible covalent binding selectivity. However, exceptions may exist. Therefore, we also discuss the conditions under which the noncovalent binding step is no longer negligible and propose to combine the relative FEP calculations with a single QM/MM calculation of warhead to predict the binding affinity and binding kinetics. Our FEP calculations also revealed that covalent and noncovalent binding states of an inhibitor do not necessarily exhibit the same selectivity. Thus, investigating both binding states, as well as the kinetics will provide extremely useful information for optimizing reversible covalent inhibitors.

摘要

可逆共价抑制剂相对于非共价或不可逆共价药物具有许多临床优势。然而,除了选择弹头外,还需要进行大量的设计和合成工作,以优化非共价相互作用,提高靶标选择性结合。由于结合过程包含多个步骤,这些步骤不一定相互独立,因此预测可逆共价抑制剂的结合亲和力具有独特的挑战。在这项研究中,我们使用两态结合模型来阐述相对结合自由能与整体可逆共价结合亲和力之间的关系。为了证明这一概念,我们采用自由能微扰(FEP)结合 λ 交换分子动力学方法,计算了一系列 α-酮酰胺类似物相对于常见弹头支架的结合自由能,这些类似物在非共价和共价结合状态下,针对两种高度同源的蛋白酶,钙蛋白酶-1 和钙蛋白酶-2。我们得出结论,一般来说,共价结合状态本身可用于预测可逆共价结合选择性。但是,可能存在例外。因此,我们还讨论了非共价结合步骤不再可以忽略的条件,并提出将相对 FEP 计算与弹头的单个 QM/MM 计算相结合,以预测结合亲和力和结合动力学。我们的 FEP 计算还表明,抑制剂的共价和非共价结合状态不一定表现出相同的选择性。因此,研究两种结合状态以及动力学将为优化可逆共价抑制剂提供非常有用的信息。

相似文献

6

引用本文的文献

1
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.超越半胱氨酸推进共价配体与药物发现
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
2
Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds?共价变构抑制剂:我们能否两全其美?
J Med Chem. 2025 Feb 27;68(4):4040-4052. doi: 10.1021/acs.jmedchem.4c02760. Epub 2025 Feb 12.
8
Calpain-2 Inhibitors as Therapy for Traumatic Brain Injury.钙蛋白酶-2 抑制剂作为创伤性脑损伤的治疗方法。
Neurotherapeutics. 2023 Oct;20(6):1592-1602. doi: 10.1007/s13311-023-01407-y. Epub 2023 Jul 20.

本文引用的文献

1
Modeling covalent-modifier drugs.建模共价修饰药物。
Biochim Biophys Acta Proteins Proteom. 2017 Nov;1865(11 Pt B):1664-1675. doi: 10.1016/j.bbapap.2017.05.009. Epub 2017 May 18.
3
Calpain research for drug discovery: challenges and potential.钙蛋白酶研究用于药物发现:挑战与潜力。
Nat Rev Drug Discov. 2016 Dec;15(12):854-876. doi: 10.1038/nrd.2016.212. Epub 2016 Nov 11.
4
Evaluation of Methods for the Calculation of the pKa of Cysteine Residues in Proteins.蛋白质中半胱氨酸残基pKa计算方法的评估。
J Chem Theory Comput. 2016 Sep 13;12(9):4662-73. doi: 10.1021/acs.jctc.6b00631. Epub 2016 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验