Liu Jun, Chen Jiawei, Dai Jia, Tang Jinyao
Department of Chemistry The University of Hong Kong Pokfulam 999077 Hong Kong.
Small Sci. 2023 Jul 9;3(9):2300026. doi: 10.1002/smsc.202300026. eCollection 2023 Sep.
Electroosmotic pumps can deliver liquid without moving parts, making them suitable for microfluidic and lab-on-chip systems. Previously, alternating current electroosmotic pumps were constructed using pairs of coplanar asymmetrical interdigitated microelectrodes on the same substrate. In this work, a simpler micropumping system is developed, separating the electrodes on two substrates and breaking the symmetry by half-depositing electrodes with 3D microstructures. Numerical simulation models of the pumping system and experimental velocity profiles are used to explain the fluid motion mechanism and structure-dependent pumping performance. In addition to its efficiency and simplicity, this new pumping system also allows for the creation of a microvortex device and an active microfluidics device. This scalable micropumping system provides a way to pump liquids at microscopic or macroscopical scale in complex microfluidics systems.
电渗泵无需移动部件就能输送液体,使其适用于微流体和芯片实验室系统。此前,交流电渗泵是通过在同一基板上使用成对的共面非对称叉指式微电极构建而成的。在这项工作中,开发了一种更简单的微泵系统,将电极分隔在两个基板上,并通过对带有三维微结构的电极进行半沉积来打破对称性。利用泵系统的数值模拟模型和实验速度分布图来解释流体运动机制和与结构相关的泵送性能。除了高效和简单之外,这种新型泵系统还能够创建一个微涡旋装置和一个有源微流体装置。这种可扩展的微泵系统为在复杂微流体系统中的微观或宏观尺度上泵送液体提供了一种方法。