Suppr超能文献

基于光学检测磁共振的金刚石纳米粒子选择性成像。

Optically Detected Magnetic Resonance for Selective Imaging of Diamond Nanoparticles.

机构信息

Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.

Department of Electrical and Computer Engineering, University of Wisconsin-Madison , 3445 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706, United States.

出版信息

Anal Chem. 2018 Jan 2;90(1):769-776. doi: 10.1021/acs.analchem.7b03157. Epub 2017 Dec 11.

Abstract

While there is great interest in understanding the fate and transport of nanomaterials in the environment and in biological systems, the detection of nanomaterials in complex matrices by fluorescence methods is complicated by photodegradation, blinking, and the presence of natural organic material and other fluorescent background signals that hamper detection of fluorescent nanomaterials of interest. Optically detected magnetic resonance (ODMR) of nitrogen-vacancy (N) centers in diamond nanoparticles provides a pathway toward background-free fluorescence measurements, as the application of a resonant microwave field can selectively modulate the intensity from N centers in nanodiamonds of various diameters in complex materials systems using on-resonance and off-resonance microwave fields. This work represents the first investigation showing how nanoparticle diameter impacts the N center lifetime and thereby directly impacts the accessible contrast and signal-to-noise ratio when using ODMR to achieve background-free imaging of Nnanodiamonds in the presence of interfering fluorophores. These results provide new insights that will guide the choice of optimum nanoparticle size and methodology for background-free imaging and sensing applications, while also providing a model system to explore the fate and transport of nanomaterials in the environment.

摘要

虽然人们非常有兴趣了解纳米材料在环境和生物系统中的命运和迁移,但荧光方法检测复杂基质中的纳米材料受到光降解、闪烁以及天然有机物质和其他荧光背景信号的干扰,这些信号阻碍了对感兴趣的荧光纳米材料的检测。金刚石纳米颗粒中氮空位(N)中心的光学检测磁共振(ODMR)为无背景荧光测量提供了一种途径,因为共振微波场的应用可以使用共振和非共振微波场选择性地调制各种直径的纳米金刚石中 N 中心的强度在复杂材料系统中。这项工作首次表明了纳米颗粒直径如何影响 N 中心的寿命,从而直接影响使用 ODMR 实现背景自由成像时的对比度和信噪比,在存在干扰荧光团的情况下,对 N 纳米金刚石进行背景自由成像。这些结果提供了新的见解,将指导选择最佳的纳米颗粒尺寸和无背景成像和传感应用的方法,同时也提供了一个模型系统来探索环境中纳米材料的命运和迁移。

相似文献

4
Relaxometry with Nitrogen Vacancy (NV) Centers in Diamond.金刚石中的氮空位(NV)中心弛豫率。
Acc Chem Res. 2022 Dec 20;55(24):3572-3580. doi: 10.1021/acs.accounts.2c00520. Epub 2022 Dec 7.

引用本文的文献

3
High-Dynamic-Range Integrated NV Magnetometers.高动态范围集成式NV磁力计
Micromachines (Basel). 2024 May 18;15(5):662. doi: 10.3390/mi15050662.
4
Complex Three-Dimensional Microscale Structures for Quantum Sensing Applications.用于量子传感应用的复杂三维微尺度结构。
Nano Lett. 2023 Oct 25;23(20):9272-9279. doi: 10.1021/acs.nanolett.3c02251. Epub 2023 Oct 9.
5
Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers.结合硅空位中心的银-金刚石核壳纳米结构
ACS Mater Au. 2021 Oct 22;2(2):85-93. doi: 10.1021/acsmaterialsau.1c00027. eCollection 2022 Mar 9.
6
Optomagnetic plasmonic nanocircuits.光磁等离子体纳米电路
Nanoscale Adv. 2019 Jun 25;1(8):3131-3138. doi: 10.1039/c9na00351g. eCollection 2019 Aug 6.

本文引用的文献

3
Diamond Quantum Devices in Biology.钻石量子器件在生物学中的应用。
Angew Chem Int Ed Engl. 2016 Jun 1;55(23):6586-98. doi: 10.1002/anie.201506556. Epub 2016 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验