Marchand Adrien, Livet Sandrine, Rosu Frédéric, Gabelica Valérie
INSERM, CNRS, Université Bordeaux, Laboratoire Acides Nucléiques Régulations Naturelle et Artificielle (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607 Pessac, France.
CNRS, INSERM, Université Bordeaux, Institut Européen de Chimie et Biologie (IECB, UMS3033, US001), 2 rue Robert Escarpit, 33607 Pessac, France.
Anal Chem. 2017 Dec 5;89(23):12674-12681. doi: 10.1021/acs.analchem.7b01736. Epub 2017 Nov 21.
Ion mobility spectrometry allows one to determine ion collision cross sections, which are related to ion size and shape. Collision cross sections (CCS) are usually discussed based on the peak center, yet the width of each peak contains further information on the distribution of collision cross sections of each conformational ensemble. Here, we analyze how to convert arrival time distributions (ATD) to CCS distributions (CCSD). With a calibration curve taking into account the CCS dependence of the time spent outside the mobility region, one can reconstruct CCS distributions with correct peak center values. However, the peak widths are incorrectly rendered because ion diffusion, which affects the peak width in the time domain, is irrelevant to collision cross sections. For drift tube ion mobility, we describe a new method, coined "FWHMstep", using a step-field experiment and processing the peak's full width at half-maximum to reconstruct CCSDs. The width of the CCS distribution helps to characterize the analyte's structural heterogeneity, and/or its flexibility (i.e., the variety of ways the analyte ions can rearrange following electrospray into kinetically stable gas-phase conformations).
离子迁移谱法能够测定离子碰撞截面,而离子碰撞截面与离子的大小和形状相关。碰撞截面(CCS)通常基于峰中心进行讨论,然而每个峰的宽度包含了关于每个构象集合的碰撞截面分布的更多信息。在此,我们分析如何将到达时间分布(ATD)转换为CCS分布(CCSD)。利用一条校准曲线,该校准曲线考虑了在迁移区域之外所花费时间的CCS依赖性,就可以重建具有正确峰中心值的CCS分布。然而,峰宽的呈现是错误的,因为影响时域中峰宽的离子扩散与碰撞截面无关。对于漂移管离子迁移谱,我们描述了一种新方法,称为“半高宽步长法(FWHMstep)”,该方法使用阶跃场实验并处理峰的半高宽来重建CCSD。CCS分布的宽度有助于表征分析物的结构异质性和/或其灵活性(即分析物离子在电喷雾后能够重排为动力学稳定的气相构象的多种方式)。