Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Blue Marble Space Institute of Science, Seattle, WA, USA.
Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109). doi: 10.1098/rsta.2016.0348.
The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called , organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification.This article is part of the themed issue 'Reconceptualizing the origins of life'.
生命的起源使我们目前对热力学、化学、物理和信息理论的综合应用的不足更加明显,这些理论无法预测复杂的有机物处于何种条件下可以产生生命状态。传统的起源研究是在一系列隐含或明确的指导原则下进行的,而不是在生物发生学方面有一个通用的形式主义。在一个名为 的新的前生物化学指导原则的框架内,有机化合物被视为在不同尺度(亚原子、原子、分子和聚合体)的能量传递现象的副产物,这些化合物以化学键的形式保留能量,从而抑制能量达到基态。有证据表明,在大多数生物发生概念中被忽视的复杂性出现了,这种复杂性源于由原子能量输入形成的化合物群体。我们假设,不同形式的能量输入可以在相同的化学介质中表现出不同程度的耗散复杂性。因此,分子和大分子尺度上的有机化学复杂化的最大能力包含了驱动其产生和修饰的能量传递过程的基础复杂性,而不是从这些过程的复杂性中产生。本文是重新思考生命起源主题问题的一部分。