Suppr超能文献

一种用于发现非生物反应中自催化网络的开源计算工作流程。

An open source computational workflow for the discovery of autocatalytic networks in abiotic reactions.

作者信息

Arya Aayush, Ray Jessica, Sharma Siddhant, Cruz Simbron Romulo, Lozano Alejandro, Smith Harrison B, Andersen Jakob Lykke, Chen Huan, Meringer Markus, Cleaves Henderson James

机构信息

Department of Physics, Lovely Professional University Jalandhar Delhi-GT Road Phagwara Punjab 144411 India.

Blue Marble Space Institute of Science Seattle Washington 98104 USA.

出版信息

Chem Sci. 2022 Mar 23;13(17):4838-4853. doi: 10.1039/d2sc00256f. eCollection 2022 May 4.

Abstract

A central question in origins of life research is how non-entailed chemical processes, which simply dissipate chemical energy because they can do so due to immediate reaction kinetics and thermodynamics, enabled the origin of highly-entailed ones, in which concatenated kinetically and thermodynamically favorable processes enhanced some processes over others. Some degree of molecular complexity likely had to be supplied by environmental processes to produce entailed self-replicating processes. The origin of entailment, therefore, must connect to fundamental chemistry that builds molecular complexity. We present here an open-source chemoinformatic workflow to model abiological chemistry to discover such entailment. This pipeline automates generation of chemical reaction networks and their analysis to discover novel compounds and autocatalytic processes. We demonstrate this pipeline's capabilities against a well-studied model system by vetting it against experimental data. This workflow can enable rapid identification of products of complex chemistries and their underlying synthetic relationships to help identify autocatalysis, and potentially self-organization, in such systems. The algorithms used in this study are open-source and reconfigurable by other user-developed workflows.

摘要

生命起源研究中的一个核心问题是,那些仅仅由于即时反应动力学和热力学就能消耗化学能的非蕴含化学过程,是如何促成了高度蕴含的化学过程的起源,在高度蕴含的化学过程中,串联的动力学和热力学有利过程使得某些过程比其他过程更具优势。环境过程可能必须提供一定程度的分子复杂性,才能产生蕴含的自我复制过程。因此,蕴含的起源必须与构建分子复杂性的基础化学相联系。我们在此展示一个开源的化学信息工作流程,用于模拟非生物化学以发现这种蕴含关系。该流程可自动生成化学反应网络并对其进行分析,以发现新化合物和自催化过程。我们通过将其与实验数据进行比对,针对一个经过充分研究的模型系统展示了该流程的能力。此工作流程能够快速识别复杂化学过程的产物及其潜在的合成关系,以帮助识别此类系统中的自催化现象以及潜在的自组织现象。本研究中使用的算法是开源的,并且可由其他用户开发的工作流程进行重新配置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2060/9067619/817b1ecc4eef/d2sc00256f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验