Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany.
Nat Commun. 2017 Nov 14;8(1):1479. doi: 10.1038/s41467-017-01138-7.
Reliable and energy-efficient magnetization switching by electrically induced spin-orbit torques is of crucial technological relevance for spintronic devices implementing memory and logic functionality. Here we predict that the strength of spin-orbit torques and the Dzyaloshinskii-Moriya interaction in topologically nontrivial magnetic insulators can exceed by far that of conventional metals. In analogy to the quantum anomalous Hall effect, we explain this extraordinary response in the absence of longitudinal currents as hallmark of monopoles in the electronic structure of systems that are interpreted most naturally within the framework of mixed Weyl semimetals. We thereby launch the effect of spin-orbit torque into the field of topology and reveal its crucial role in mediating the topological phase transitions arising from the complex interplay between magnetization direction and momentum-space topology. The presented concepts may be exploited to understand and utilize magnetoelectric coupling phenomena in insulating ferromagnets and antiferromagnets.
通过电诱导的自旋轨道扭矩实现可靠且节能的磁化开关,对于实现存储和逻辑功能的自旋电子器件具有至关重要的技术意义。在这里,我们预测拓扑非平凡磁性绝缘体中的自旋轨道扭矩和 Dzyaloshinskii-Moriya 相互作用的强度将远远超过传统金属。类似于量子反常霍尔效应,我们在没有纵向电流的情况下解释这种异常响应,这是系统电子结构中存在磁单极子的标志,而在混合 Weyl 半金属的框架内,对系统的电子结构进行解释最为自然。因此,我们将自旋轨道扭矩效应引入拓扑领域,并揭示其在介导由磁化方向和动量空间拓扑之间的复杂相互作用引起的拓扑相变中所起的关键作用。所提出的概念可用于理解和利用绝缘铁磁体和反铁磁体中的磁电耦合现象。