Kondou Kouta, Chen Hua, Tomita Takahiro, Ikhlas Muhammad, Higo Tomoya, MacDonald Allan H, Nakatsuji Satoru, Otani YoshiChika
RIKEN, Center for Emergent Matter Science (CEMS), Saitama, 351-0198, Japan.
CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan.
Nat Commun. 2021 Nov 18;12(1):6491. doi: 10.1038/s41467-021-26453-y.
Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet MnSn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in MnSn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.
自旋轨道转矩(SOT)能够实现对铁磁体、亚铁磁体和反铁磁体磁态的高效电控制。然而,传统的SOT存在严重局限性,即无论被解释为自旋霍尔效应(SHE)还是埃德尔斯坦效应,只有面内自旋会在表面附近积累。这样的SOT不适用于控制垂直磁化,而垂直磁化对于实现低功耗存储器件更为有利。在此,我们报告在拓扑反铁磁体MnSn中观测到一种类似强磁场的巨型SOT,其方向和大小可通过改变反铁磁体的序参量方向进行调控。为了在同等基础上理解磁自旋霍尔效应(MSHE)和传统SHE诱导的SOT,我们将它们表述为界面自旋电场响应,并使用宏观对称性分析和互补的微观量子动力学理论进行分析。在此框架下,由MSHE导致的大的面外自旋积累具有带间起源,很可能是由MnSn中与动量相关的大自旋分裂引起的。我们的工作展示了反铁磁外尔半金属在克服传统SOT的局限性以及实现具有新功能的低功耗自旋电子器件方面的独特潜力。