Durak Grażyna M, Brownlee Colin, Wheeler Glen L
The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK.
Department of Biology, Electron Microscopy Center, University of Konstanz, Universitätsstr. 10, D-78457, Konstanz, Germany.
Sci Rep. 2017 Nov 13;7(1):15409. doi: 10.1038/s41598-017-15562-8.
The production of calcium carbonate by coccolithophores (haptophytes) contributes significantly to global biogeochemical cycling. The recent identification of a silicifying haptophyte, Prymnesium neolepis, has provided new insight into the evolution of biomineralisation in this lineage. However, the cellular mechanisms of biomineralisation in both calcifying and silicifying haptophytes remain poorly understood. To look for commonalities between these two biomineralisation systems in haptophytes, we have determined the role of actin and tubulin in the formation of intracellular biomineralised scales in the coccolithophore, Coccolithus braarudii and in P. neolepis. We find that disruption of the actin network interferes with secretion of the biomineralised elements in both C. braarudii and P. neolepis. In contrast, disruption of the microtubule network does not prevent secretion of the silica scales in P. neolepis but results in production of abnormally small silica scales and also results in the increased formation of malformed coccoliths in C. braarudii. We conclude that the cytoskeleton plays a crucial role in biomineralisation in both silicifying and calcifying haptophytes. There are some important similarities in the contribution of the cytoskeleton to these different forms of biomineralisation, suggesting that common cellular mechanisms may have been recruited to perform similar roles in both lineages.
颗石藻(定鞭藻)产生碳酸钙对全球生物地球化学循环有重大贡献。最近对一种硅化定鞭藻——新鳞原甲藻(Prymnesium neolepis)的鉴定,为该谱系生物矿化的进化提供了新见解。然而,钙化和硅化定鞭藻生物矿化的细胞机制仍知之甚少。为了探寻定鞭藻这两种生物矿化系统之间的共性,我们确定了肌动蛋白和微管蛋白在颗石藻——布氏颗石藻(Coccolithus braarudii)和新鳞原甲藻细胞内生物矿化鳞片形成中的作用。我们发现,肌动蛋白网络的破坏会干扰布氏颗石藻和新鳞原甲藻中生物矿化元素的分泌。相比之下,微管网络的破坏并不会阻止新鳞原甲藻中硅质鳞片的分泌,但会导致硅质鳞片异常小,并且还会导致布氏颗石藻中畸形颗石的形成增加。我们得出结论,细胞骨架在硅化和钙化定鞭藻的生物矿化中都起着关键作用。细胞骨架对这些不同形式生物矿化的贡献存在一些重要的相似之处,这表明可能已招募了共同的细胞机制在这两个谱系中发挥类似作用。