Suppr超能文献

一种基于模型的临床前方法,用于预测抗结核药物组合的临床药效学相互作用。

A model-informed preclinical approach for prediction of clinical pharmacodynamic interactions of anti-TB drug combinations.

机构信息

Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.

Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands.

出版信息

J Antimicrob Chemother. 2018 Feb 1;73(2):437-447. doi: 10.1093/jac/dkx380.

Abstract

BACKGROUND

Identification of pharmacodynamic interactions is not reasonable to carry out in a clinical setting for many reasons. The aim of this work was to develop a model-informed preclinical approach for prediction of clinical pharmacodynamic drug interactions in order to inform early anti-TB drug development.

METHODS

In vitro time-kill experiments were performed with Mycobacterium tuberculosis using rifampicin, isoniazid or ethambutol alone as well as in different combinations at clinically relevant concentrations. The multistate TB pharmacometric (MTP) model was used to characterize the natural growth and exposure-response relationships of each drug after mono exposure. Pharmacodynamic interactions during combination exposure were characterized by linking the MTP model to the general pharmacodynamic interaction (GPDI) model with successful separation of the potential effect on each drug's potency (EC50) by the combining drug(s).

RESULTS

All combinations showed pharmacodynamic interactions at cfu level, where all combinations, except isoniazid plus ethambutol, showed more effect (synergy) than any of the drugs alone. Using preclinical information, the MTP-GPDI modelling approach was shown to correctly predict clinically observed pharmacodynamic interactions, as deviations from expected additivity.

CONCLUSIONS

With the ability to predict clinical pharmacodynamic interactions, using preclinical information, the MTP-GPDI model approach outlined in this study constitutes groundwork for model-informed input to the development of new and enhancement of existing anti-TB combination regimens.

摘要

背景

由于诸多原因,在临床环境中识别药效学相互作用是不合理的。本研究的目的是开发一种基于模型的临床前方法,以预测临床药效学药物相互作用,从而为早期抗结核药物研发提供信息。

方法

采用体外时间杀伤实验,以利福平、异烟肼或乙胺丁醇单独或以临床相关浓度的不同组合方式作用于结核分枝杆菌。采用多状态结核药代动力学(MTP)模型来描述每种药物在单一暴露后的自然生长和暴露-反应关系。通过将 MTP 模型与通用药效学相互作用(GPDI)模型相连接,对组合暴露期间的药效学相互作用进行了特征描述,成功地通过联合药物(s)分离了对每种药物效力(EC50)的潜在影响。

结果

所有组合在 CFU 水平均显示出药效学相互作用,除异烟肼加乙胺丁醇外,所有组合均显示出比任何单一药物更强的效果(协同作用)。利用临床前信息,MTP-GPDI 建模方法能够正确预测临床观察到的药效学相互作用,从而偏离预期的加和性。

结论

通过利用临床前信息预测临床药效学相互作用,本研究中概述的 MTP-GPDI 模型方法为模型指导新型和增强型抗结核联合方案的开发提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e01a/5890720/9d66371fa29b/dkx380f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验