Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
Clin Pharmacol Ther. 2020 Aug;108(2):274-286. doi: 10.1002/cpt.1814. Epub 2020 Apr 2.
The development of optimal treatment regimens in tuberculosis (TB) remains challenging due to the need of combination therapy and possibility of pharmacodynamic (PD) interactions. Preclinical information about PD interactions needs to be used more optimally when designing early bactericidal activity (EBA) studies. In this work, we developed a translational approach which can allow for forward translation to predict efficacy of drug combination in EBA studies using the Multistate Tuberculosis Pharmacometric (MTP) and the General Pharmacodynamic Interaction (GPDI) models informed by in vitro static time-kill data. These models were linked with translational factors to account for differences between the in vitro system and humans. Our translational MTP-GPDI model approach was able to predict the EBA , EBA , and EBA from different EBA studies of rifampicin and isoniazid in monotherapy and combination. Our translational model approach can contribute to an optimal dose selection of drug combinations in early TB clinical trials.
由于需要联合治疗和可能存在药效学(PD)相互作用,开发结核病(TB)的最佳治疗方案仍然具有挑战性。在设计早期杀菌活性(EBA)研究时,需要更优化地利用关于 PD 相互作用的临床前信息。在这项工作中,我们开发了一种转化方法,该方法可以使用多状态结核药代动力学(MTP)和通用药效学相互作用(GPDI)模型进行正向翻译,从而根据体外静态杀菌数据预测 EBA 研究中药物组合的疗效。这些模型与转化因素相关联,以解释体外系统与人体之间的差异。我们的转化 MTP-GPDI 模型方法能够预测利福平与异烟肼单药和联合治疗不同 EBA 研究中的 EBA、EBA 和 EBA。我们的转化模型方法可以为早期 TB 临床试验中的药物组合的最佳剂量选择做出贡献。