Suppr超能文献

利用志愿观测数据进行蜱虫动态建模和制图。

Modelling and mapping tick dynamics using volunteered observations.

机构信息

Department of Geo-Information Processing (GIP), Faculty of Geo-Information and Earth Observation (ITC), University of Twente, Enschede, The Netherlands.

Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands.

出版信息

Int J Health Geogr. 2017 Nov 14;16(1):41. doi: 10.1186/s12942-017-0114-8.

Abstract

BACKGROUND

Tick populations and tick-borne infections have steadily increased since the mid-1990s posing an ever-increasing risk to public health. Yet, modelling tick dynamics remains challenging because of the lack of data and knowledge on this complex phenomenon. Here we present an approach to model and map tick dynamics using volunteered data. This approach is illustrated with 9 years of data collected by a group of trained volunteers who sampled active questing ticks (AQT) on a monthly basis and for 15 locations in the Netherlands. We aimed at finding the main environmental drivers of AQT at multiple time-scales, and to devise daily AQT maps at the national level for 2014.

METHOD

Tick dynamics is a complex ecological problem driven by biotic (e.g. pathogens, wildlife, humans) and abiotic (e.g. weather, landscape) factors. We enriched the volunteered AQT collection with six types of weather variables (aggregated at 11 temporal scales), three types of satellite-derived vegetation indices, land cover, and mast years. Then, we applied a feature engineering process to derive a set of 101 features to characterize the conditions that yielded a particular count of AQT on a date and location. To devise models predicting the AQT, we use a time-aware Random Forest regression method, which is suitable to find non-linear relationships in complex ecological problems, and provides an estimation of the most important features to predict the AQT.

RESULTS

We trained a model capable of fitting AQT with reduced statistical metrics. The multi-temporal study on the feature importance indicates that variables linked to water levels in the atmosphere (i.e. evapotranspiration, relative humidity) consistently showed a higher explanatory power than previous works using temperature. As a product of this study, we are able of mapping daily tick dynamics at the national level.

CONCLUSIONS

This study paves the way towards the design of new applications in the fields of environmental research, nature management, and public health. It also illustrates how Citizen Science initiatives produce geospatial data collections that can support scientific analysis, thus enabling the monitoring of complex environmental phenomena.

摘要

背景

自 20 世纪 90 年代中期以来,蜱种群和蜱传感染稳步增加,对公共健康构成的威胁日益增大。然而,由于缺乏对这种复杂现象的数据和知识,蜱虫动态建模仍然具有挑战性。在这里,我们提出了一种使用志愿者数据来建模和绘制蜱虫动态的方法。本方法使用一组经过培训的志愿者在荷兰 15 个地点每月采集活跃的觅食蜱(AQT)的 9 年数据进行说明。我们旨在寻找多个时间尺度上 AQT 的主要环境驱动因素,并为 2014 年制定全国范围内的 AQT 日图谱。

方法

蜱虫动态是由生物因素(如病原体、野生动物、人类)和非生物因素(如天气、景观)驱动的复杂生态问题。我们用六种类型的天气变量(聚合在 11 个时间尺度上)、三种类型的卫星衍生植被指数、土地覆盖和林分年数来丰富志愿者采集的 AQT 数据。然后,我们应用特征工程过程来获得一组 101 个特征,用于描述在特定日期和地点产生特定 AQT 计数的条件。为了设计预测 AQT 的模型,我们使用时间感知随机森林回归方法,该方法适用于在复杂生态问题中寻找非线性关系,并提供预测 AQT 的最重要特征的估计。

结果

我们训练了一个能够拟合 AQT 并具有降低统计指标的模型。特征重要性的多时间研究表明,与大气中的水位(即蒸散、相对湿度)相关的变量比以前使用温度的工作表现出更高的解释能力。作为这项研究的结果,我们能够在全国范围内绘制每日蜱虫动态图。

结论

本研究为环境研究、自然管理和公共卫生领域的新应用设计铺平了道路。它还说明了公民科学倡议如何产生支持科学分析的地理空间数据集,从而能够监测复杂的环境现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff48/5686904/6e194c493bc0/12942_2017_114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验