Suppr超能文献

基于 fMRI 和非影像数据的 ADHD 分类融合研究。

Fusion of fMRI and non-imaging data for ADHD classification.

机构信息

University of London, United Kingdom.

University of London, United Kingdom.

出版信息

Comput Med Imaging Graph. 2018 Apr;65:115-128. doi: 10.1016/j.compmedimag.2017.10.002. Epub 2017 Oct 19.

Abstract

Resting state fMRI has emerged as a popular neuroimaging method for automated recognition and classification of different brain disorders. Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common brain disorders affecting young children, yet its underlying mechanism is not completely understood and its diagnosis is mainly dependent on behavior analysis. This paper addresses the problem of classification of ADHD based on resting state fMRI and proposes a machine learning framework with integration of non-imaging data with imaging data to investigate functional connectivity alterations between ADHD and control subjects (not diagnosed with ADHD). Our aim is to apply computational techniques to (1) automatically classify a subject as ADHD or control, (2) identify differences in functional connectivity of these two groups and (3) evaluate the importance of fusing non-imaging with imaging data for classification. In the first stage of our framework, we determine the functional connectivity of brain regions by grouping brain activity using clustering algorithms. Next, we employ Elastic Net based feature selection to select the most discriminant features from the dense functional brain network and integrate non-imaging data. Finally, a Support Vector Machine classifier is trained to classify ADHD subjects vs. control. The proposed framework was evaluated on a public ADHD-200 dataset, and our results suggest that fusion of non-imaging data improves the performance of the framework. Classification results outperform the state-of-the-art on some subsets of the data.

摘要

静息态 fMRI 已成为一种流行的神经影像学方法,可用于自动识别和分类不同的大脑疾病。注意力缺陷多动障碍(ADHD)是最常见的影响幼儿的大脑疾病之一,但它的潜在机制尚未完全理解,其诊断主要依赖于行为分析。本文针对基于静息态 fMRI 的 ADHD 分类问题,提出了一种机器学习框架,该框架将非影像数据与影像数据相结合,以研究 ADHD 和对照组(未被诊断为 ADHD)之间的功能连接变化。我们的目的是应用计算技术:(1)自动将主体分类为 ADHD 或对照组,(2)识别这两组之间功能连接的差异,(3)评估融合非影像与影像数据对分类的重要性。在我们框架的第一阶段,我们通过使用聚类算法对大脑活动进行分组来确定大脑区域的功能连接。接下来,我们采用基于弹性网络的特征选择从密集的功能大脑网络中选择最具判别力的特征,并整合非影像数据。最后,训练支持向量机分类器来对 ADHD 患者与对照组进行分类。我们在一个公开的 ADHD-200 数据集上评估了所提出的框架,结果表明融合非影像数据可以提高框架的性能。在数据的某些子集上,分类结果优于最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验