Suppr超能文献

基于关键点的多线索特征融合网络(MF-Net)用于TOVA评估中多动症儿童的动作识别

Keypoints-Based Multi-Cue Feature Fusion Network (MF-Net) for Action Recognition of ADHD Children in TOVA Assessment.

作者信息

Tang Wanyu, Shi Chao, Li Yuanyuan, Tang Zhonglan, Yang Gang, Zhang Jing, He Ling

机构信息

College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Mental Health Center, West China School of Medicine, Sichuan University, Chengdu 610041, China.

出版信息

Bioengineering (Basel). 2024 Nov 29;11(12):1210. doi: 10.3390/bioengineering11121210.

Abstract

Attention deficit hyperactivity disorder (ADHD) is a prevalent neurodevelopmental disorder among children and adolescents. Behavioral detection and analysis play a crucial role in ADHD diagnosis and assessment by objectively quantifying hyperactivity and impulsivity symptoms. Existing video-based action recognition algorithms focus on object or interpersonal interactions, they may overlook ADHD-specific behaviors. Current keypoints-based algorithms, although effective in attenuating environmental interference, struggle to accurately model the sudden and irregular movements characteristic of ADHD children. This work proposes a novel keypoints-based system, the Multi-cue Feature Fusion Network (MF-Net), for recognizing actions and behaviors of children with ADHD during the Test of Variables of Attention (TOVA). The system aims to assess ADHD symptoms as described in the DSM-V by extracting features from human body and facial keypoints. For human body keypoints, we introduce the Multi-scale Features and Frame-Attention Adaptive Graph Convolutional Network (MSF-AGCN) to extract irregular and impulsive motion features. For facial keypoints, we transform data into images and employ MobileVitv2 for transfer learning to capture facial and head movement features. Ultimately, a feature fusion module is designed to fuse the features from both branches, yielding the final action category prediction. The system, evaluated on 3801 video samples of ADHD children, achieves 90.6% top-1 accuracy and 97.6% top-2 accuracy across six action categories. Additional validation experiments on public datasets NW-UCLA, NTU-2D, and AFEW-VA verify the network's performance.

摘要

注意缺陷多动障碍(ADHD)是儿童和青少年中一种普遍的神经发育障碍。行为检测和分析通过客观量化多动和冲动症状,在ADHD的诊断和评估中起着至关重要的作用。现有的基于视频的动作识别算法侧重于物体或人际交互,可能会忽略ADHD特有的行为。当前基于关键点的算法虽然在减弱环境干扰方面有效,但难以准确建模ADHD儿童特有的突然和不规则运动。这项工作提出了一种新颖的基于关键点的系统——多线索特征融合网络(MF-Net),用于在注意力变量测试(TOVA)期间识别ADHD儿童的动作和行为。该系统旨在通过从人体和面部关键点提取特征来评估《精神疾病诊断与统计手册》第五版(DSM-V)中描述的ADHD症状。对于人体关键点,我们引入多尺度特征和帧注意力自适应图卷积网络(MSF-AGCN)来提取不规则和冲动的运动特征。对于面部关键点,我们将数据转换为图像,并采用MobileVitv2进行迁移学习以捕捉面部和头部运动特征。最终,设计了一个特征融合模块来融合两个分支的特征,产生最终的动作类别预测。该系统在3801个ADHD儿童的视频样本上进行评估,在六个动作类别上实现了90.6%的top-1准确率和97.6%的top-2准确率。在公共数据集NW-UCLA、NTU-2D和AFEW-VA上的额外验证实验验证了该网络的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3082/11672943/013d15ec4b8d/bioengineering-11-01210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验