Suppr超能文献

单盲与双盲同行评议中的评审偏倚。

Reviewer bias in single- versus double-blind peer review.

机构信息

Google, Inc., Mountain View, CA 94043;

State Key Laboratory of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.

出版信息

Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12708-12713. doi: 10.1073/pnas.1707323114. Epub 2017 Nov 14.

Abstract

Peer review may be "single-blind," in which reviewers are aware of the names and affiliations of paper authors, or "double-blind," in which this information is hidden. Noting that computer science research often appears first or exclusively in peer-reviewed conferences rather than journals, we study these two reviewing models in the context of the 10th Association for Computing Machinery International Conference on Web Search and Data Mining, a highly selective venue (15.6% acceptance rate) in which expert committee members review full-length submissions for acceptance. We present a controlled experiment in which four committee members review each paper. Two of these four reviewers are drawn from a pool of committee members with access to author information; the other two are drawn from a disjoint pool without such access. This information asymmetry persists through the process of bidding for papers, reviewing papers, and entering scores. Reviewers in the single-blind condition typically bid for 22% fewer papers and preferentially bid for papers from top universities and companies. Once papers are allocated to reviewers, single-blind reviewers are significantly more likely than their double-blind counterparts to recommend for acceptance papers from famous authors, top universities, and top companies. The estimated odds multipliers are tangible, at 1.63, 1.58, and 2.10, respectively.

摘要

同行评审可能是“单盲”,即评审员知道论文作者的姓名和所属机构,或者是“双盲”,即隐藏此信息。注意到计算机科学研究通常首先或仅在同行评审会议上出现,而不是在期刊上,我们在第十届计算机协会国际网络搜索和数据挖掘会议的背景下研究了这两种评审模式,这是一个高度选择性的场所(接受率为 15.6%),专家委员会成员审查全文提交以进行接受。我们进行了一项对照实验,其中四名委员会成员审查每篇论文。这四名评审员中的两名来自可以访问作者信息的委员会成员池中;另外两名来自没有这种访问权限的不相交池中。这种信息不对称性贯穿于竞标论文、评审论文和输入分数的过程中。在单盲条件下的评审员通常竞标少 22%的论文,并优先竞标来自顶尖大学和公司的论文。一旦论文分配给评审员,单盲评审员比双盲评审员更有可能推荐来自知名作者、顶尖大学和顶尖公司的论文获得通过。估计的赔率乘数分别为 1.63、1.58 和 2.10,相当明显。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32ee/5715744/e020e4dc6767/pnas.1707323114fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验