College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China.
Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou 310058, China.
ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42459-42470. doi: 10.1021/acsami.7b10098. Epub 2017 Nov 29.
Currently, the limited penetration of nanoparticles remains a major challenge for antitumor nanomedicine to penetrate into the tumor tissues. Herein, we propose a size-shrinkable drug delivery system based on a polysaccharide-modified dendrimer with tumor microenvironment responsiveness for the first time to our knowledge, which was formed by conjugating the terminal glucose of hyaluronic acid (HA) to the superficial amidogen of poly(amidoamine) (PAMAM), using a matrix metalloproteinase-2 (MMP-2)-cleavable peptide (PLGLAG) via click reaction. These nanoparticles had an initial size of ∼200 nm, but once deposited in the presence of MMP-2, they experienced a dramatic and fast size change and dissociated into their dendrimer building blocks (∼10 nm in diameter) because of cleavage of PLGLAG. This rapid size-shrinking characteristic not only promoted nanoparticle extravasation and accumulation in tumors benefited from the enhanced permeability and retention effect but also achieved faster nanoparticle diffusion and penetration. We have further conducted comparative studies of MMP-2-sensitive macromolecules (HA-pep-PAMAM) and MMP-2-insensitive macromolecules (HA-PAMAM) synthesized with a similar particle size, surface charge, and chemical composition and evaluated in both monolayer cells and multicellular spheroids. The results confirmed that the enzyme-responsive size shrink is an implementable strategy to enhance drug penetration and to improve therapeutic efficacy. Meanwhile, macromolecule-based nanoparticles with size-variable characteristics not only promote drug penetration, but they can also be used as gene delivery systems, suggesting great potential as nano-delivery systems.
目前,纳米颗粒的有限穿透性仍然是抗肿瘤纳米医学穿透肿瘤组织的主要挑战。在此,我们首次提出了一种基于具有肿瘤微环境响应性的多糖修饰树状大分子的尺寸可收缩药物传递系统,该系统是通过点击反应将透明质酸(HA)的末端葡萄糖接枝到聚(酰胺-胺)(PAMAM)的表面氨基上而形成的,使用基质金属蛋白酶-2(MMP-2)可切割肽(PLGLAG)。这些纳米颗粒的初始尺寸约为 200nm,但一旦在 MMP-2 的存在下沉积,由于 PLGLAG 的切割,它们会经历剧烈和快速的尺寸变化,并解离成它们的树状大分子构建块(直径约 10nm)。这种快速的尺寸收缩特性不仅促进了纳米颗粒在肿瘤中的渗漏和积累,这得益于增强的通透性和保留效应,而且还实现了更快的纳米颗粒扩散和渗透。我们还进一步对合成具有相似粒径、表面电荷和化学组成的 MMP-2 敏感大分子(HA-pep-PAMAM)和 MMP-2 不敏感大分子(HA-PAMAM)进行了比较研究,并在单层细胞和多细胞球体中进行了评价。结果证实,酶响应的尺寸收缩是一种可行的策略,可以增强药物渗透,提高治疗效果。同时,具有可变尺寸特征的基于大分子的纳米颗粒不仅可以促进药物渗透,还可以用作基因传递系统,这表明它们作为纳米传递系统具有巨大的潜力。