Suppr超能文献

作为学习交互模型的具身机器人神经网络

Robot-Embodied Neuronal Networks as an Interactive Model of Learning.

作者信息

Shultz Abraham M, Lee Sangmook, Guaraldi Mary, Shea Thomas B, Yanco Holly C

机构信息

Robotics Laboratory, Department of Computer Science, USA.

Laboratory for Neuroscience, Department of Biological Sciences University of Massachusetts Lowell, Lowell, MA 01854, USA.

出版信息

Open Neurol J. 2017 Sep 30;11:39-47. doi: 10.2174/1874205X01711010039. eCollection 2017.

Abstract

BACKGROUND AND OBJECTIVE

The reductionist approach of neuronal cell culture has been useful for analyses of synaptic signaling. Murine cortical neurons in culture spontaneously form an network capable of transmitting complex signals, and have been useful for analyses of several fundamental aspects of neuronal development hitherto difficult to clarify . However, these networks lack the ability to receive and respond to sensory input from the environment as do neurons . Establishment of these networks in culture chambers containing multi-electrode arrays allows recording of synaptic activity as well as stimulation.

METHOD

This article describes the embodiment of neuronal networks neurons in a closed-loop cybernetic system, consisting of digitized video signals as sensory input and a robot arm as motor output.

RESULTS

In this system, the neuronal network essentially functions as a simple central nervous system. This embodied network displays the ability to track a target in a naturalistic environment. These findings underscore that neuronal networks can respond to sensory input and direct motor output.

CONCLUSION

These analyses may contribute to optimization of neuronal-computer interfaces for perceptive and locomotive prosthetic applications. networks display critical alterations in signal patterns following treatment with subcytotoxic concentrations of amyloid-beta. Future studies including comparison of tracking accuracy of embodied networks prepared from mice harboring key mutations with those from normal mice, accompanied with exposure to Abeta and/or other neurotoxins, may provide a useful model system for monitoring subtle impairment of neuronal function as well as normal and abnormal development.

摘要

背景与目的

神经元细胞培养的还原论方法对于突触信号分析很有用。培养中的小鼠皮层神经元会自发形成一个能够传递复杂信号的网络,并且对于分析迄今为止难以阐明的神经元发育的几个基本方面很有用。然而,这些网络缺乏像神经元那样接收和响应来自环境的感觉输入的能力。在包含多电极阵列的培养室中建立这些网络可以记录突触活动以及进行刺激。

方法

本文描述了在一个闭环控制论系统中神经元网络的具体实现,该系统由数字化视频信号作为感觉输入和一个机器人手臂作为运动输出组成。

结果

在这个系统中,神经元网络本质上起到了一个简单中枢神经系统的作用。这个具体实现的网络展示了在自然环境中追踪目标的能力。这些发现强调了神经元网络能够响应感觉输入并指导运动输出。

结论

这些分析可能有助于优化用于感知和运动假肢应用的神经元-计算机接口。在用亚细胞毒性浓度的β-淀粉样蛋白处理后,网络在信号模式上显示出关键变化。未来的研究,包括比较由携带关键突变的小鼠制备的具体实现的网络与正常小鼠的网络在追踪准确性方面的差异,并伴随着暴露于β-淀粉样蛋白和/或其他神经毒素,可能会提供一个有用的模型系统,用于监测神经元功能的细微损伤以及正常和异常发育情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e978/5678239/413c84c56c74/TONEUJ-11-39_F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验