Jiang Bei, Petkova Eva, Tarpey Thaddeus, Ogden R Todd
University of Alberta.
New York University.
Ann Appl Stat. 2017 Sep;11(3):1513-1536. doi: 10.1214/17-AOAS1044. Epub 2017 Oct 5.
Latent class models are widely used to identify unobserved subgroups (i.e., latent classes) based upon one or more manifest variables. The probability of belonging to each subgroup is typically modeled as a function of a set of measured covariates. In this paper, we extend existing latent class models to incorporate matrix covariates. This research is motivated by a randomized placebo-controlled depression clinical trial. One study goal is to identify a subgroup of subjects who experience symptoms improvement early on during antidepressant treatment, which is considered to be an indication of a placebo rather than a true pharmacological response. We want to relate the likelihood of belonging to this subgroup of early responders to baseline electroencephalography (EEG) measurement that takes the form of a matrix. The proposed method is built upon a low rank Candecomp/Parafac (CP) decomposition of the target coefficient matrix through low-dimensional latent variables, which effectively reduces the model dimensionality. We adopt a Bayesian hierarchical modeling approach to estimate the latent variables, which allows a flexible way to incorporate prior knowledge about covariate effect heterogeneity and offers a data-driven method of regularization. Simulation studies suggest that the proposed method is robust against potentially misspecified rank in the CP decomposition. With the motivating example we show how the proposed method can be applied to extract valuable information from baseline EEG measurements that explains the likelihood of belonging to the early responder subgroup, helping to identify placebo responders and suggesting new targets for the study of placebo response.
潜在类别模型被广泛用于基于一个或多个显性变量识别未观察到的亚组(即潜在类别)。属于每个亚组的概率通常被建模为一组测量协变量的函数。在本文中,我们扩展了现有的潜在类别模型以纳入矩阵协变量。这项研究是由一项随机安慰剂对照的抑郁症临床试验推动的。一个研究目标是识别出在抗抑郁治疗早期经历症状改善的受试者亚组,这被认为是安慰剂效应而非真正药物反应的一个指标。我们希望将属于这个早期反应者亚组的可能性与以矩阵形式呈现的基线脑电图(EEG)测量相关联。所提出的方法基于通过低维潜在变量对目标系数矩阵进行低秩Candecomp/Parafac(CP)分解,这有效地降低了模型维度。我们采用贝叶斯分层建模方法来估计潜在变量,这允许以灵活的方式纳入关于协变量效应异质性的先验知识,并提供一种数据驱动的正则化方法。模拟研究表明,所提出的方法对于CP分解中可能错误指定的秩具有鲁棒性。通过这个激励性示例,我们展示了所提出的方法如何能够应用于从基线EEG测量中提取有价值的信息,这些信息解释了属于早期反应者亚组的可能性,有助于识别安慰剂反应者,并为安慰剂反应的研究提出新目标。