Department of Cardiovascular Research, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.
FASEB J. 2018 Apr;32(4):1778-1793. doi: 10.1096/fj.201700349R. Epub 2018 Jan 5.
The acetylcholine-activated inward rectifier potassium current ( I) is constitutively active in persistent atrial fibrillation (AF). We tested the hypothesis that the blocking of I with the small molecule chloroquine terminates persistent AF. We used a sheep model of tachypacing-induced, persistent AF, molecular modeling, electrophysiology, and structural biology approaches. The 50% inhibition/inhibitory concentration of I block with chloroquine, measured by patch clamp, was 1 μM. In optical mapping of sheep hearts with persistent AF, 1 μM chloroquine restored sinus rhythm. Molecular modeling suggested that chloroquine blocked the passage of a hydrated potassium ion through the intracellular domain of Kir3.1 (a molecular correlate of I) by interacting with residues D260 and F255, in proximity to I228, Q227, and L299. H N heteronuclear single-quantum correlation of purified Kir3.1 intracellular domain confirmed the modeling results. F255, I228, Q227, and L299 underwent significant chemical-shift perturbations upon drug binding. We then crystallized and solved a 2.5 Å X-ray structure of Kir3.1 with F255A mutation. Modeling of chloroquine binding to the mutant channel suggested that the drug's binding to the pore becomes off centered, reducing its ability to block a hydrated potassium ion. Patch clamp validated the structural and modeling data, where the F255A and D260A mutations significantly reduced I block by chloroquine. With the use of numerical and structural biology approaches, we elucidated the details of how a small molecule could block an ion channel and exert antiarrhythmic effects. Chloroquine binds the I channel at a site formed by specific amino acids in the ion-permeation pathway, leading to decreased I and the subsequent termination of AF.-Takemoto, Y., Slough, D. P., Meinke, G., Katnik, C., Graziano, Z. A., Chidipi, B., Reiser, M., Alhadidy, M. M., Ramirez, R., Salvador-Montañés, O., Ennis, S., Guerrero-Serna, G., Haburcak, M., Diehl, C., Cuevas, J., Jalife, J., Bohm, A., Lin,Y.-S., Noujaim, S. F. Structural basis for the antiarrhythmic blockade of a potassium channel with a small molecule.
乙酰胆碱激活内向整流钾电流(I)在持续性心房颤动(AF)中持续激活。我们测试了一个假设,即小分子氯喹阻断 I 可以终止持续性 AF。我们使用了一种羊的快速起搏诱导、持续性 AF 模型、分子建模、电生理学和结构生物学方法。通过膜片钳测量,氯喹对 I 阻断的 50%抑制/抑制浓度为 1 μM。在光学映射中,羊的持续性 AF 中,1 μM 的氯喹恢复窦性节律。分子建模表明,氯喹通过与 D260 和 F255 相互作用,在 I228、Q227 和 L299 附近阻断了一个水化钾离子通过 Kir3.1(I 的分子相关物)的通道。用纯化的 Kir3.1 胞内域进行的 HN 异核单量子相关证实了建模结果。药物结合后,F255、I228、Q227 和 L299 发生了显著的化学位移扰动。然后我们结晶并解决了一个 2.5 Å 的 X 射线结构 Kir3.1 与 F255A 突变。氯喹结合到突变通道的模型表明,药物的结合失去了中心,降低了其阻断水化钾离子的能力。膜片钳验证了结构和建模数据,其中 F255A 和 D260A 突变显著降低了氯喹对 I 的阻断。通过数值和结构生物学方法,我们阐明了小分子如何阻断离子通道并发挥抗心律失常作用的细节。氯喹结合在离子通透途径中由特定氨基酸形成的 I 通道部位,导致 I 减少,随后终止 AF。-Takemoto,Y.,Slough,D. P.,Meinke,G.,Katnik,C.,Graziano,Z. A.,Chidipi,B.,Reiser,M.,Alhadidy,M. M.,Ramirez,R.,Salvador-Montañés,O.,Ennis,S.,Guerrero-Serna,G.,Haburcak,M.,Diehl,C.,Cuevas,J.,Jalife,J.,Bohm,A.,Lin,Y.-S.,Noujaim,S. F. 用小分子阻断钾通道的抗心律失常作用的结构基础。