Department of Community Medicine, School of Medicine, West Virginia University, PO Box 9190, Morgantown, WV 26506-9190, USA.
Stat Med. 2011 Sep 30;30(22):2696-707. doi: 10.1002/sim.4293. Epub 2011 Jul 12.
Analysis of a large longitudinal study of children motivated our work. The results illustrate how accurate inference for fixed effects in a general linear mixed model depends on the covariance model selected for the data. Simulation studies have revealed biased inference for the fixed effects with an underspecified covariance structure, at least in small samples. One underspecification common for longitudinal data assumes a simple random intercept and conditional independence of the within-subject errors (i.e., compound symmetry). We prove that the underspecification creates bias in both small and large samples, indicating that recruiting more participants will not alleviate inflation of the Type I error rate associated with fixed effect inference. Enumerations and simulations help quantify the bias and evaluate strategies for avoiding it. When practical, backwards selection of the covariance model, starting with an unstructured pattern, provides the best protection. Tutorial papers can guide the reader in minimizing the chances of falling into the often spurious software trap of nonconvergence. In some cases, the logic of the study design and the scientific context may support a structured pattern, such as an autoregressive structure. The sandwich estimator provides a valid alternative in sufficiently large samples. Authors reporting mixed-model analyses should note possible biases in fixed effects inference because of the following: (i) the covariance model selection process; (ii) the specific covariance model chosen; or (iii) the test approximation.
一项大型儿童纵向研究的分析激发了我们的工作。结果说明了在广义线性混合模型中,固定效应的精确推断如何取决于为数据选择的协方差模型。模拟研究表明,对于协方差结构指定不足的情况,固定效应的推断存在偏差,至少在小样本中是这样。一种常见的纵向数据的指定不足假设简单的随机截距和个体内误差的条件独立性(即复合对称性)。我们证明,这种指定不足会在小样本和大样本中产生偏差,这表明招募更多的参与者并不能减轻与固定效应推断相关的第一类错误率的膨胀。枚举和模拟有助于量化偏差,并评估避免它的策略。当实际情况允许时,从非结构化模式开始,逐步选择协方差模型,可以提供最佳保护。教程论文可以指导读者将陷入非收敛这种常见的软件陷阱的可能性降到最低。在某些情况下,研究设计的逻辑和科学背景可能支持结构化模式,例如自回归结构。在足够大的样本中,三明治估计量提供了有效的替代方法。报告混合模型分析的作者应该注意由于以下原因可能导致固定效应推断存在偏差:(i)协方差模型选择过程;(ii)选择的特定协方差模型;或(iii)检验逼近。