Suppr超能文献

用于软组织工程的基于聚己内酯-嵌段-聚四氢呋喃-嵌段-聚己内酯共聚物的生物相容性、可降解热塑性聚氨酯。

Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering.

作者信息

Mi Hao-Yang, Jing Xin, Napiwocki Brett N, Hagerty Breanna S, Chen Guojun, Turng Lih-Sheng

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.

Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China.

出版信息

J Mater Chem B. 2017 Jun 14;5(22):4137-4151. doi: 10.1039/C7TB00419B. Epub 2017 May 1.

Abstract

Biodegradable synthetic polymers have been widely used as tissue engineering scaffold materials. Even though they have shown excellent biocompatibility, they have failed to resemble the low stiffness and high elasticity of soft tissues because of the presence of massive rigid ester bonds. Herein, we synthesized a new thermoplastic polyurethane elastomer (CTC-PU(BET)) using poly ester ether triblock copolymer (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone triblock copolymer, PCTC) as the soft segment, aliphatic diisocyanate (hexamethylene diisocyanate, HDI) as the hard segment, and degradable diol (bis(2-hydroxyethyl) terephthalate, BET) as the chain extender. PCTC inhibited crystallization and reduced the melting temperature of CTC-PU(BET), and BET dramatically enhanced the thermal decomposition and hydrolytic degradation rate when compared with conventional polyester-based biodegradable TPUs. The CTC-PU(BET) synthesized in this study possessed a low tensile modulus and tensile strength of 2.2 MPa and 1.3 MPa, respectively, and an elongation-at-break over 700%. Meanwhile, it maintained a 95.3% recovery rate and 90% resilience over ten cycles of loading and unloading. In addition, the TPU could be electrospun into both random and aligned fibrous scaffolds consisting of major microfibers and nanobranches. 3T3 fibroblast cell culture confirmed that these scaffolds outperformed the conventional biodegradable TPU scaffolds in terms of substrate-cellular interactions and cell proliferation. Considering the advantages of this TPU, such as ease of synthesis, low cost, low stiffness, high elasticity, controllable degradation rate, ease of processability, and excellent biocompatibility, it has great prospects to be used as a tissue engineering scaffold material for soft tissue regeneration.

摘要

可生物降解的合成聚合物已被广泛用作组织工程支架材料。尽管它们表现出了优异的生物相容性,但由于存在大量刚性酯键,它们未能模拟软组织的低刚度和高弹性。在此,我们使用聚酯醚三嵌段共聚物(聚己内酯-嵌段-聚四氢呋喃-嵌段-聚己内酯三嵌段共聚物,PCTC)作为软段、脂肪族二异氰酸酯(六亚甲基二异氰酸酯,HDI)作为硬段以及可降解二醇(对苯二甲酸双(2-羟乙基)酯,BET)作为扩链剂,合成了一种新型热塑性聚氨酯弹性体(CTC-PU(BET))。与传统的基于聚酯的可生物降解热塑性聚氨酯相比,PCTC抑制了结晶并降低了CTC-PU(BET)的熔点,BET显著提高了热分解和水解降解速率。本研究中合成的CTC-PU(BET)具有较低的拉伸模量和拉伸强度,分别为2.2 MPa和1.3 MPa,以及超过700%的断裂伸长率。同时,在十次加载和卸载循环中,它保持了95.3%的回复率和90%的弹性。此外,该热塑性聚氨酯可以通过静电纺丝制成由主要微纤维和纳米分支组成的随机排列和定向排列的纤维支架。3T3成纤维细胞培养证实,这些支架在底物-细胞相互作用和细胞增殖方面优于传统的可生物降解热塑性聚氨酯支架。考虑到这种热塑性聚氨酯的优点,如易于合成、成本低、刚度低、弹性高、降解速率可控、易于加工以及优异的生物相容性,它作为软组织再生的组织工程支架材料具有广阔的应用前景。

相似文献

2
Synthesis and Characterization of Plug-and-Play Polyurethane Urea Elastomers as Biodegradable Matrixes for Tissue Engineering Applications.
ACS Biomater Sci Eng. 2017 Dec 11;3(12):3493-3502. doi: 10.1021/acsbiomaterials.7b00512. Epub 2017 Nov 1.
4
Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
ACS Appl Mater Interfaces. 2017 Jan 25;9(3):2169-2180. doi: 10.1021/acsami.6b15009. Epub 2017 Jan 12.
6
Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning.
ACS Appl Bio Mater. 2021 Jul 19;4(7):5585-5597. doi: 10.1021/acsabm.1c00403. Epub 2021 Jun 25.
8
Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
Biomaterials. 2008 Oct;29(28):3781-91. doi: 10.1016/j.biomaterials.2008.06.009. Epub 2008 Jul 3.

引用本文的文献

3
Low-Temperature Electrospinning-Fabricated Three-Dimensional Nanofiber Scaffolds for Skin Substitutes.
Micromachines (Basel). 2025 Apr 30;16(5):552. doi: 10.3390/mi16050552.
4
3D Melt Blowing of Elastollan Thermoplastic Polyurethane for Tissue Engineering Applications: A Pilot Study.
Manuf Lett. 2024 Oct;41(Suppl):357-363. doi: 10.1016/j.mfglet.2024.09.043. Epub 2024 Oct 15.
5
Synthesis and use of thermoplastic polymers for tissue engineering purposes.
Int J Pharm X. 2024 Dec 17;9:100313. doi: 10.1016/j.ijpx.2024.100313. eCollection 2025 Jun.
6
Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability.
Bioengineering (Basel). 2024 Dec 9;11(12):1245. doi: 10.3390/bioengineering11121245.
7
Artificial Intelligence-Guided Inverse Design of Deployable Thermo-Metamaterial Implants.
ACS Appl Mater Interfaces. 2025 Jan 15;17(2):2991-3001. doi: 10.1021/acsami.4c17625. Epub 2025 Jan 2.
9
Encapsulated stretchable amphibious strain sensors.
Mater Horiz. 2024 Oct 14;11(20):5070-5080. doi: 10.1039/d4mh00757c.

本文引用的文献

1
Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications.
J Mater Chem B. 2015 Oct 21;3(39):7641-7652. doi: 10.1039/c5tb01048a. Epub 2015 Aug 18.
3
Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends.
J Mater Chem B. 2016 Jan 28;4(4):600-612. doi: 10.1039/c5tb01861g. Epub 2015 Dec 18.
4
Rapidly Biodegrading PLGA-Polyurethane Fibers for Sustained Release of Physicochemically Diverse Drugs.
ACS Biomater Sci Eng. 2016 Sep 12;2(9):1595-1607. doi: 10.1021/acsbiomaterials.6b00346. Epub 2016 Jul 13.
5
Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition.
Acta Biomater. 2016 Sep 1;41:264-72. doi: 10.1016/j.actbio.2016.05.034. Epub 2016 May 28.
7
Biocompatible, Biodegradable, and Electroactive Polyurethane-Urea Elastomers with Tunable Hydrophilicity for Skeletal Muscle Tissue Engineering.
ACS Appl Mater Interfaces. 2015 Dec 30;7(51):28273-85. doi: 10.1021/acsami.5b10829. Epub 2015 Dec 18.
8
Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds.
Soft Matter. 2015 Oct 14;11(38):7648-55. doi: 10.1039/c5sm01909e.
9
Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.
Mater Sci Eng C Mater Biol Appl. 2015 Nov 1;56:511-7. doi: 10.1016/j.msec.2015.07.018. Epub 2015 Jul 16.
10
Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.
Prog Neurobiol. 2015 Aug;131:87-104. doi: 10.1016/j.pneurobio.2015.06.001. Epub 2015 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验