Mi Hao-Yang, Jing Xin, Napiwocki Brett N, Hagerty Breanna S, Chen Guojun, Turng Lih-Sheng
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China.
J Mater Chem B. 2017 Jun 14;5(22):4137-4151. doi: 10.1039/C7TB00419B. Epub 2017 May 1.
Biodegradable synthetic polymers have been widely used as tissue engineering scaffold materials. Even though they have shown excellent biocompatibility, they have failed to resemble the low stiffness and high elasticity of soft tissues because of the presence of massive rigid ester bonds. Herein, we synthesized a new thermoplastic polyurethane elastomer (CTC-PU(BET)) using poly ester ether triblock copolymer (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone triblock copolymer, PCTC) as the soft segment, aliphatic diisocyanate (hexamethylene diisocyanate, HDI) as the hard segment, and degradable diol (bis(2-hydroxyethyl) terephthalate, BET) as the chain extender. PCTC inhibited crystallization and reduced the melting temperature of CTC-PU(BET), and BET dramatically enhanced the thermal decomposition and hydrolytic degradation rate when compared with conventional polyester-based biodegradable TPUs. The CTC-PU(BET) synthesized in this study possessed a low tensile modulus and tensile strength of 2.2 MPa and 1.3 MPa, respectively, and an elongation-at-break over 700%. Meanwhile, it maintained a 95.3% recovery rate and 90% resilience over ten cycles of loading and unloading. In addition, the TPU could be electrospun into both random and aligned fibrous scaffolds consisting of major microfibers and nanobranches. 3T3 fibroblast cell culture confirmed that these scaffolds outperformed the conventional biodegradable TPU scaffolds in terms of substrate-cellular interactions and cell proliferation. Considering the advantages of this TPU, such as ease of synthesis, low cost, low stiffness, high elasticity, controllable degradation rate, ease of processability, and excellent biocompatibility, it has great prospects to be used as a tissue engineering scaffold material for soft tissue regeneration.
可生物降解的合成聚合物已被广泛用作组织工程支架材料。尽管它们表现出了优异的生物相容性,但由于存在大量刚性酯键,它们未能模拟软组织的低刚度和高弹性。在此,我们使用聚酯醚三嵌段共聚物(聚己内酯-嵌段-聚四氢呋喃-嵌段-聚己内酯三嵌段共聚物,PCTC)作为软段、脂肪族二异氰酸酯(六亚甲基二异氰酸酯,HDI)作为硬段以及可降解二醇(对苯二甲酸双(2-羟乙基)酯,BET)作为扩链剂,合成了一种新型热塑性聚氨酯弹性体(CTC-PU(BET))。与传统的基于聚酯的可生物降解热塑性聚氨酯相比,PCTC抑制了结晶并降低了CTC-PU(BET)的熔点,BET显著提高了热分解和水解降解速率。本研究中合成的CTC-PU(BET)具有较低的拉伸模量和拉伸强度,分别为2.2 MPa和1.3 MPa,以及超过700%的断裂伸长率。同时,在十次加载和卸载循环中,它保持了95.3%的回复率和90%的弹性。此外,该热塑性聚氨酯可以通过静电纺丝制成由主要微纤维和纳米分支组成的随机排列和定向排列的纤维支架。3T3成纤维细胞培养证实,这些支架在底物-细胞相互作用和细胞增殖方面优于传统的可生物降解热塑性聚氨酯支架。考虑到这种热塑性聚氨酯的优点,如易于合成、成本低、刚度低、弹性高、降解速率可控、易于加工以及优异的生物相容性,它作为软组织再生的组织工程支架材料具有广阔的应用前景。