Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
Cell Tissue Res. 2018 Jan;371(1):201-212. doi: 10.1007/s00441-017-2729-2. Epub 2017 Nov 23.
Neurons are postmitotic. Once lost because of injury or degeneration, they do not regenerate in most regions of the mammalian central nervous system. Recent advancements nevertheless clearly reveal that new neurons can be reprogrammed from non-neuronal cells, especially glial cells, in the adult mammalian brain and spinal cord. Here, we give a brief overview concerning cell fate reprogramming in vivo and then focus on the underlying molecular and cellular mechanisms. Specifically, we critically review the cellular sources and the reprogramming factors for in vivo neuronal conversion. Influences of environmental cues and the challenges ahead are also discussed. The ability of inducing new neurons from an abundant and broadly distributed non-neuronal cell source brings new perspectives regarding regeneration-based therapies for traumatic brain and spinal cord injuries and degenerative diseases.
神经元是有丝分裂后的细胞。在哺乳动物中枢神经系统的大多数区域,一旦因损伤或变性而丢失,它们就不会再生。然而,最近的进展清楚地表明,新的神经元可以从成年哺乳动物大脑和脊髓中的非神经元细胞,特别是神经胶质细胞中重新编程。在这里,我们简要概述体内细胞命运重编程,然后重点介绍潜在的分子和细胞机制。具体来说,我们批判性地回顾了体内神经元转化的细胞来源和重编程因子。还讨论了环境线索的影响和未来的挑战。从丰富且广泛分布的非神经元细胞来源诱导新神经元的能力为创伤性脑和脊髓损伤以及退行性疾病的基于再生的治疗带来了新的视角。