Suppr超能文献

通过适应性实验室进化谷氨酸棒杆菌开发高拷贝数质粒。

Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum.

机构信息

Department of Chemical and Biomolecular Engineering (BK Plus program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA.

出版信息

Appl Microbiol Biotechnol. 2018 Jan;102(2):873-883. doi: 10.1007/s00253-017-8653-2. Epub 2017 Nov 25.

Abstract

Beyond its traditional role as an L-amino acid producer, Corynebacterium glutamicum has recently received significant attention regarding its use in the production of various biochemicals and recombinant proteins. However, despite these attributes, limitations in genetic tools are still hampering the engineering of C. glutamicum for use in more potential hosts. Here, we engineered a C. glutamicum via adaptive laboratory evolution to enhance the production of recombinant proteins. During the continuous cultivation, C. glutamicum producing enhanced green fluorescent proteins was screened using high-speed flow cytometer, and in the end, we successfully isolated an evolved strain with a fluorescence intensity 4.5-fold higher than that of the original strain. Extensive analysis of the evolved strain confirmed that the plasmid prepared from the evolved strain contains the nonsense mutation in the parB locus, which mutation contributed to increasing the copy number of plasmid by approximately 10-fold compared to that of the wild type. To validate the usefulness of the high-copy-number plasmid, we examined the secretory production of endoxylanase and the bioconversion of xylose to xylonate using xylonate dehydrogenase. In the fed-batch cultivation, the use of the high-copy-number plasmid led to 1.4-fold increase in the production of endoxylanase (~ 1.54 g/L in culture medium) without cell growth retardation comparing cultivation with cells harboring original plasmid. The expression of xylonate dehydrogenase in the high-copy-number plasmid also improved the bioconversion into xylonic acid by approximately 1.5-fold compared to the original plasmid.

摘要

除了作为 L-氨基酸的生产者的传统角色外,谷氨酸棒状杆菌最近因其在生产各种生物化学物质和重组蛋白方面的用途而受到广泛关注。然而,尽管具有这些特性,但遗传工具的局限性仍然阻碍了谷氨酸棒状杆菌在更多潜在宿主中的工程应用。在这里,我们通过适应性实验室进化工程改造了谷氨酸棒状杆菌,以提高重组蛋白的产量。在连续培养过程中,我们使用高速流式细胞仪筛选出生产增强型绿色荧光蛋白的谷氨酸棒状杆菌,最终成功分离出荧光强度比原始菌株高 4.5 倍的进化菌株。对进化菌株的广泛分析证实,从进化菌株制备的质粒在 parB 基因座含有无意义突变,与野生型相比,该突变使质粒的拷贝数增加了约 10 倍。为了验证高拷贝数质粒的有用性,我们使用木聚糖酶进行了分泌生产和木糖到木酸盐的生物转化实验,使用木酸盐脱氢酶进行了实验。在分批补料培养中,与使用原始质粒的培养相比,使用高拷贝数质粒可使木聚糖酶的产量增加 1.4 倍(培养物中约为 1.54 g/L),而不会导致细胞生长迟缓。高拷贝数质粒中木酸盐脱氢酶的表达也使生物转化为木酸酸的效率提高了约 1.5 倍,与原始质粒相比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验