Suppr超能文献

非协调化学实现了固态锂硫电池中具有高导电性和稳定性的电解质/填料界面。

Uncoordinated chemistry enables highly conductive and stable electrolyte/filler interfaces for solid-state lithium-sulfur batteries.

机构信息

Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, People's Republic of China.

Department of Chemical Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.

出版信息

Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2300197120. doi: 10.1073/pnas.2300197120. Epub 2023 Apr 5.

Abstract

Composite-polymer-electrolytes (CPEs) embedded with advanced filler materials offer great promise for fast and preferential Li conduction. The filler surface chemistry determines the interaction with electrolyte molecules and thus critically regulates the Li behaviors at the interfaces. Herein, we probe into the role of electrolyte/filler interfaces (EFI) in CPEs and promote Li conduction by introducing an unsaturated coordination Prussian blue analog (UCPBA) filler. Combining scanning transmission X-ray microscope stack imaging studies and first-principle calculations, fast Li conduction is revealed only achievable at a chemically stable EFI, which can be established by the unsaturated Co-O coordination in UCPBA to circumvent the side reactions. Moreover, the as-exposed Lewis-acid metal centers in UCPBA efficiently attract the Lewis-base anions of Li salts, which facilitates the Li disassociation and enhances its transference number (t). Attributed to these superiorities, the obtained CPEs realize high room-temperature ionic conductivity up to 0.36 mS cm and t of 0.6, enabling an excellent cyclability of lithium metal electrodes over 4,000 h as well as remarkable capacity retention of 97.6% over 180 cycles at 0.5 C for solid-state lithium-sulfur batteries. This work highlights the crucial role of EFI chemistry in developing highly conductive CPEs and high-performance solid-state batteries.

摘要

复合聚合物电解质(CPEs)嵌入先进的填充材料,为快速和优先的 Li 传导提供了巨大的前景。填充剂表面化学决定了与电解质分子的相互作用,从而对界面处的 Li 行为进行了严格的调控。在此,我们通过引入不饱和配位普鲁士蓝类似物(UCPBA)填充剂,探讨了 CPEs 中电解质/填充剂界面(EFI)的作用,并促进 Li 传导。结合扫描透射 X 射线显微镜堆栈成像研究和第一性原理计算,只有在化学稳定的 EFI 下,才能实现快速 Li 传导,这可以通过 UCPBA 中的不饱和 Co-O 配位来实现,从而避免副反应。此外,UCPBA 中暴露的路易斯酸金属中心有效地吸引 Li 盐的路易斯碱阴离子,这有利于 Li 的离解,并提高其迁移数(t)。由于这些优越性,所获得的 CPEs 在室温下实现了高达 0.36 mS cm 的离子电导率和 0.6 的 t 值,使锂金属电极在 4000 小时以上的循环中具有出色的循环稳定性,并且在 0.5 C 下用于固态锂硫电池时,容量保持率达到 97.6%,经过 180 次循环。这项工作强调了 EFI 化学在开发高导电 CPEs 和高性能固态电池中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a16/10104547/83b217f952ad/pnas.2300197120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验