Suppr超能文献

单晶硅纳米膜的溶解及其在水溶性电子器件中的封装层和电接口中的应用。

Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.

机构信息

School of Electrical and Electronic Engineering, Yonsei Univerisity , Seoul 03722, Republic of Korea.

Department of Materials Science, Fudan University , Shanghai 200433, China.

出版信息

ACS Nano. 2017 Dec 26;11(12):12562-12572. doi: 10.1021/acsnano.7b06697. Epub 2017 Dec 14.

Abstract

The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.

摘要

通过水解将器件级、单晶硅纳米膜转化为良性最终产物的化学过程是全生态/生物可降解高性能电子产品的基础。本文研究了这些在与地下水和生物流体相关化学成分的水溶液中的过程。结果表明,溶液中 Si(OH) 和蛋白质的存在会减缓溶解速率,而与 Ca 相关的离子特异性效应会显著增加这些速率。这些信息不仅允许将硅纳米膜有效用作生态/生物可降解电子产品的有源层,还可用作水屏障,在通过溶解消失之前能够提供完美的封装。通过向 Si 中引入掺杂剂以及在暴露表面上添加氧化物层,可以控制这种封装的时间尺度。前者的可能性还允许掺杂硅用作测量生物电位的电接口,如在用于体内神经记录的完全生物可吸收平台中所证明的那样。这一系列发现对于进一步开发水溶性硅电子产品具有重要意义。

相似文献

2
Advanced Materials and Devices for Bioresorbable Electronics.可吸收电子学用的先进材料与器件。
Acc Chem Res. 2018 May 15;51(5):988-998. doi: 10.1021/acs.accounts.7b00548. Epub 2018 Apr 17.

引用本文的文献

2
Bioresorbable Materials for Wound Management.用于伤口处理的生物可吸收材料。
Biomimetics (Basel). 2025 Feb 12;10(2):108. doi: 10.3390/biomimetics10020108.
4
Advances in Symbiotic Bioabsorbable Devices.共生生物可吸收装置的进展
Adv Sci (Weinh). 2025 Jun;12(24):e2410289. doi: 10.1002/advs.202410289. Epub 2025 Jan 23.

本文引用的文献

3
Bioresorbable silicon electronic sensors for the brain.可生物降解硅电子脑传感器。
Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.
8
Materials for bioresorbable radio frequency electronics.可生物吸收的射频电子材料。
Adv Mater. 2013 Jul 12;25(26):3526-31. doi: 10.1002/adma.201300920. Epub 2013 May 17.
9
A physically transient form of silicon electronics.一种物理上短暂存在的硅电子形式。
Science. 2012 Sep 28;337(6102):1640-4. doi: 10.1126/science.1226325.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验