Bai Wubin, Irie Masahiro, Liu Zhonghe, Luan Haiwen, Franklin Daniel, Nandoliya Khizar, Guo Hexia, Zang Hao, Weng Yang, Lu Di, Wu Di, Wu Yixin, Song Joseph, Han Mengdi, Song Enming, Yang Yiyuan, Chen Xuexian, Zhao Hangbo, Lu Wei, Monti Giuditta, Stepien Iwona, Kandela Irawati, Haney Chad R, Wu Changsheng, Won Sang Min, Ryu Hanjun, Rwei Alina, Shen Haixu, Kim Jihye, Yoon Hong-Joon, Ouyang Wei, Liu Yihan, Suen Emily, Chen Huang-Yu, Okina Jerry, Liang Jushen, Huang Yonggang, Ameer Guillermo A, Zhou Weidong, Rogers John A
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA.
BME Front. 2021 Jan 15;2021:8653218. doi: 10.34133/2021/8653218. eCollection 2021.
. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. . Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. . Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. . The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. . The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.
区域组织微环境温度的实时监测可作为治疗各种健康状况和疾病的诊断依据。传统的热传感器能够测量皮肤表面或某些体腔的近表面区域的温度。深度评估需要通过物理接口连接到外部读出电子设备的植入设备,这会给患者带来感染风险和行动限制。此外,在一段时间的使用后进行手术取出程序可能会带来额外的风险和成本。在此,我们报告了一种无线、可生物吸收的温度传感器,它利用多层光子腔,在感兴趣的时间范围内对区域深层组织微环境进行连续光学测量,随后通过自然身体过程完全清除。这些设计将检测角度对反射光谱的影响与温度解耦,以实现高精度传感,体外实验和光学模拟对此提供了支持。对植入清醒、自由活动和睡眠动物模型皮下组织的设备进行的研究说明了该技术在体内测量中的适用性。结果表明,可生物吸收材料在先进光子结构中的应用具有跟踪组织微环境热特征的独特能力,与人类医疗保健具有潜在相关性。