Physical Chemistry, Technische Universität Dresden , Bergstraße 66b, 01062 Dresden, Germany.
School of Chemistry and Biosciences, University of Bradford , Bradford, BD7 1DP, Great Britain.
ACS Nano. 2017 Dec 26;11(12):12174-12184. doi: 10.1021/acsnano.7b05300. Epub 2017 Dec 1.
Semiconductor nanostructures such as CdSe quantum dots and colloidal nanoplatelets exhibit remarkable optical properties, making them interesting for applications in optoelectronics and photocatalysis. For both areas of application a detailed understanding of the electronic structure is essential to achieve highly efficient devices. The electronic structure can be probed using the fact that optical properties of semiconductor nanoparticles are found to be extremely sensitive to the presence of excess charges that can for instance be generated by means of an electrochemical charge transfer via an electrode. Here we present the use of EMAS as a versatile spectroelectrochemical method to obtain absolute band edge positions of CdSe nanostructures versus a well-defined reference electrode under ambient conditions. In this, the spectral properties of the nanoparticles are monitored with respect to an applied electrochemical potential. We developed a bleaching model that yields the lowest electronic state in the conduction band of the nanostructures. A change in the band edge positions caused by quantum confinement is shown both for CdSe quantum dots and for colloidal nanoplatelets. In the case of CdSe quantum dots these findings are in good agreement with tight binding calculations. The method presented is not limited to CdSe nanostructures but can be used as a universal tool. Hence, this technique allows the determination of absolute band edge positions of a large variety of materials used in various applications.
半导体纳米结构,如 CdSe 量子点和胶体纳米板,具有显著的光学性质,因此在光电和光催化应用中很有趣。对于这两个应用领域,详细了解电子结构对于实现高效器件至关重要。可以通过利用半导体纳米粒子的光学性质对过剩电荷的存在极其敏感这一事实来探测电子结构,过剩电荷例如可以通过通过电极的电化学电荷转移来产生。在这里,我们提出了使用 EMAS 作为一种通用的光谱电化学方法,在环境条件下相对于定义良好的参比电极获得 CdSe 纳米结构的绝对能带边缘位置。在这方面,纳米粒子的光谱性质相对于施加的电化学电势进行监测。我们开发了一种漂白模型,该模型产生纳米结构的导带中的最低电子态。量子限制引起的能带边缘位置的变化,对于 CdSe 量子点和胶体纳米板都有显示。在 CdSe 量子点的情况下,这些发现与紧束缚计算吻合得很好。所提出的方法不仅限于 CdSe 纳米结构,而是可以用作通用工具。因此,该技术允许确定各种应用中使用的各种材料的绝对能带边缘位置。