Suppr超能文献

从背根神经节神经记录中估计膀胱压力的解码算法评估。

Evaluation of Decoding Algorithms for Estimating Bladder Pressure from Dorsal Root Ganglia Neural Recordings.

机构信息

Biomedical Engineering Department, University of Michigan, Ann Arbor, MI, USA.

Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.

出版信息

Ann Biomed Eng. 2018 Feb;46(2):233-246. doi: 10.1007/s10439-017-1966-6. Epub 2017 Nov 27.

Abstract

A closed-loop device for bladder control may offer greater clinical benefit compared to current open-loop stimulation devices. Previous studies have demonstrated the feasibility of using single-unit recordings from sacral-level dorsal root ganglia (DRG) for decoding bladder pressure. Automatic online sorting, to differentiate single units, can be computationally heavy and unreliable, in contrast to simple multi-unit thresholded activity. In this study, the feasibility of using DRG multi-unit recordings to decode bladder pressure was examined. A broad range of feature selection methods and three algorithms (multivariate linear regression, basic Kalman filter, and a nonlinear autoregressive moving average model) were used to create training models and provide validation fits to bladder pressure for data collected in seven anesthetized feline experiments. A non-linear autoregressive moving average (NARMA) model with regularization provided the most accurate bladder pressure estimate, based on normalized root-mean-squared error, NRMSE, (17 ± 7%). A basic Kalman filter yielded the highest similarity to the bladder pressure with an average correlation coefficient, CC, of 0.81 ± 0.13. The best algorithm set (based on NRMSE) was further evaluated on data obtained from a chronic feline experiment. Testing results yielded a NRMSE and CC of 10.7% and 0.61, respectively from a model that was trained on data recorded 2 weeks prior. From offline analysis, implementation of NARMA in a closed-loop scheme for detecting bladder contractions would provide a robust control signal. Ultimate integration of closed-loop algorithms in bladder neuroprostheses will require evaluations of parameter and signal stability over time.

摘要

一种用于膀胱控制的闭环设备可能比当前的开环刺激设备提供更大的临床益处。先前的研究已经证明了使用骶神经节(DRG)的单单位记录来解码膀胱压力的可行性。与简单的多单位阈值活动相比,自动在线分类以区分单单位可能在计算上很繁重且不可靠。在这项研究中,研究了使用 DRG 多单位记录来解码膀胱压力的可行性。使用了广泛的特征选择方法和三种算法(多元线性回归,基本卡尔曼滤波器和非线性自回归移动平均模型)来创建训练模型,并为在七个麻醉猫实验中收集的数据提供了对膀胱压力的验证拟合。基于正则化的非线性自回归移动平均(NARMA)模型提供了最准确的膀胱压力估计,基于归一化均方根误差(NRMSE),NRMSE 为 17±7%。基本卡尔曼滤波器与膀胱压力的相似性最高,平均相关系数为 0.81±0.13。最佳算法集(基于 NRMSE)在慢性猫实验获得的数据上进一步进行了评估。测试结果表明,从记录数据前 2 周训练的模型中,NRMSE 和 CC 分别为 10.7%和 0.61。从离线分析来看,在闭环方案中实施 NARMA 以检测膀胱收缩将提供稳健的控制信号。将闭环算法最终集成到膀胱神经假体中,需要评估参数和信号随时间的稳定性。

相似文献

4
Estimating bladder pressure from sacral dorsal root ganglia recordings.从骶背根神经节记录估计膀胱压力。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4239-42. doi: 10.1109/IEMBS.2011.6091052.

引用本文的文献

6
Ultracompliant Carbon Nanotube Direct Bladder Device.超顺应性碳纳米管直接膀胱装置。
Adv Healthc Mater. 2019 Oct;8(20):e1900477. doi: 10.1002/adhm.201900477. Epub 2019 Sep 25.

本文引用的文献

2
Suburothelial Bladder Contraction Detection with Implanted Pressure Sensor.植入式压力传感器检测膀胱黏膜下层收缩
PLoS One. 2017 Jan 6;12(1):e0168375. doi: 10.1371/journal.pone.0168375. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验