Department of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science,University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
Sci Rep. 2017 Nov 28;7(1):16529. doi: 10.1038/s41598-017-16421-2.
Cooperativity is a feature many multimeric proteins use to control activity. Here we show that the bacterial heptose isomerase GmhA displays homotropic positive and negative cooperativity among its four protomers. Most similar proteins achieve this through conformational changes: GmhA instead employs a delicate network of hydrogen bonds, and couples pairs of active sites controlled by a unique water channel. This network apparently raises the Lewis acidity of the catalytic zinc, thus increasing the activity at one active site at the cost of preventing substrate from adopting a reactive conformation at the paired negatively cooperative site - a "half-site" behavior. Our study establishes the principle that multimeric enzymes can exploit this cooperativity without conformational changes to maximize their catalytic power and control. More broadly, this subtlety by which enzymes regulate functions could be used to explore new inhibitor design strategies.
协同性是许多多聚体蛋白用来控制活性的一种特性。在这里,我们表明细菌庚糖异构酶 GmhA 在其四个亚基之间表现出同型正协同性和负协同性。大多数相似的蛋白质通过构象变化来实现这一点:GmhA 则采用了氢键的精细网络,并连接由独特的水通道控制的活性位点对。这个网络显然提高了催化锌的路易斯酸度,从而在一个活性位点上增加了活性,而代价是阻止底物在配对的负协同位点上采取反应构象——一种“半位点”行为。我们的研究确立了这样一个原则,即多聚体酶可以在不发生构象变化的情况下利用这种协同性来最大限度地提高其催化能力和控制能力。更广泛地说,这种酶调节功能的微妙性可以用来探索新的抑制剂设计策略。