Suppr超能文献

小鼠中三氯乙烯谷胱甘肽结合代谢产物DCVG、DCVC和NAcDCVC的组织间和品系间变异性特征

Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

作者信息

Luo Yu-Syuan, Furuya Shinji, Chiu Weihsueh, Rusyn Ivan

机构信息

a Department of Veterinary Integrative Biosciences , Texas A&M University , College Station , TX , USA.

出版信息

J Toxicol Environ Health A. 2018;81(1-3):37-52. doi: 10.1080/15287394.2017.1408512. Epub 2017 Nov 30.

Abstract

Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

摘要

三氯乙烯(TCE)是一种普遍存在的环境毒物,是肝脏和肾脏致癌物。TCE与谷胱甘肽(GSH)结合会导致形成肾毒性和致突变性代谢产物,这些代谢产物被认为对肾癌的发展至关重要;然而,由于之前检测它们的分析方法缺乏灵敏度,人们对它们在组织中的水平了解相对较少。在此,开发了一种基于液相色谱-串联质谱(LC-MS/MS)的方法,用于同时检测多种小鼠组织中的S-(1,2-二氯乙烯基)-谷胱甘肽(DCVG)、S-(1,2-二氯乙烯基)-L-半胱氨酸(DCVC)和N-乙酰-S-(1,2-二氯乙烯基)-L-半胱氨酸(NAcDCVC)。这种分析方法快速、灵敏(各代谢产物和组织的检测限(LOD)为3-30 fmol),并且能够可靠地定量肝脏、肾脏和血清中的所有三种代谢产物。该方法用于表征TCE结合代谢产物形成过程中的组织间和品系间变异性。给协作杂交的20个近交系雄性小鼠单次口服TCE(24、240或800 mg/kg)。观察到DCVG、DCVC和NAcDCVC水平存在品系间变异性(几何标准差(GSD)=1.6-2.9)。虽然NAcDCVC在分析的组织中分布均匀,但在肝脏中检测到的DCVG水平最高,在肾脏中检测到的DCVC水平最高。有证据表明,TCE结合代谢产物形成过程中的品系间变异性可能会影响对不良健康影响的易感性,并且这种方法可能有助于填补TCE人体健康评估中的数据空白。

相似文献

1
Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.
J Toxicol Environ Health A. 2018;81(1-3):37-52. doi: 10.1080/15287394.2017.1408512. Epub 2017 Nov 30.
2
Analytical methods impact estimates of trichloroethylene's glutathione conjugation and risk assessment.
Toxicol Lett. 2018 Oct 15;296:82-94. doi: 10.1016/j.toxlet.2018.07.006. Epub 2018 Aug 3.

引用本文的文献

1
Incorporating new approach methods (NAMs) data in dose-response assessments: The future is now!
J Toxicol Environ Health B Crit Rev. 2025 Jan 2;28(1):28-62. doi: 10.1080/10937404.2024.2412571. Epub 2024 Oct 10.
4
Model systems and organisms for addressing inter- and intra-species variability in risk assessment.
Regul Toxicol Pharmacol. 2022 Jul;132:105197. doi: 10.1016/j.yrtph.2022.105197. Epub 2022 May 28.
5
Characterization of population variability of 1,3-butadiene derived protein adducts in humans and mice.
Regul Toxicol Pharmacol. 2022 Jul;132:105171. doi: 10.1016/j.yrtph.2022.105171. Epub 2022 Apr 22.
6
Toxicity assessments of selected trichloroethylene and perchloroethylene metabolites in three in vitro human placental models.
Reprod Toxicol. 2022 Apr;109:109-120. doi: 10.1016/j.reprotox.2022.03.003. Epub 2022 Mar 16.
9
Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson's disease.
Environ Sci Process Impacts. 2020 Mar 1;22(3):543-554. doi: 10.1039/c9em00578a. Epub 2020 Jan 30.

本文引用的文献

2
Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps.
J Pharmacol Exp Ther. 2016 Oct;359(1):110-23. doi: 10.1124/jpet.116.232629. Epub 2016 Aug 10.
3
TRICHLOROETHYLENE, TETRACHLOROETHYLENE, AND SOME OTHER CHLORINATED AGENTS.
IARC Monogr Eval Carcinog Risks Hum. 2014;106:1-512.
4
A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
Environ Health Perspect. 2015 Dec;123(12):1241-54. doi: 10.1289/ehp.1409385. Epub 2015 May 22.
5
Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity.
Mutat Res Rev Mutat Res. 2014 Oct-Dec;762:22-36. doi: 10.1016/j.mrrev.2014.04.003.
8
Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse.
Environ Health Perspect. 2014 May;122(5):456-63. doi: 10.1289/ehp.1307623. Epub 2014 Feb 11.
10
Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard.
Pharmacol Ther. 2014 Jan;141(1):55-68. doi: 10.1016/j.pharmthera.2013.08.004. Epub 2013 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验