Zou Chen, Ren Zhixiang, Hui Kangshuo, Wang Zixiang, Fan Yangning, Yang Yichen, Yuan Bo, Zhao Baodan, Di Dawei
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09457-2.
Solution-processed semiconductor lasers promise lightweight, wearable and scalable optoelectronic applications. Among the gain media for solution-processed lasers, metal halide perovskites stand out as an exceptional class because of their ability to achieve wavelength-adjustable, low-threshold lasing under optical pumping. Despite the progress in this field, electrically driven lasing from perovskite semiconductors remains a critical challenge. Here we demonstrate an electrically driven perovskite laser, constructed by vertically integrating a low-threshold single-crystal perovskite microcavity sub-unit with a high-power microcavity perovskite LED (PeLED) sub-unit. Under pulsed electrical excitation, the dual-cavity perovskite device shows a minimum lasing threshold of 92 A cm (average threshold: 129 A cm, at about 22 °C, in air), which is an order of magnitude lower than that of state-of-the-art electrically driven organic lasers. Key to this demonstration is the integrated dual-cavity device architecture, which allows the microcavity PeLED sub-unit to deliver directional emission into the single-crystal perovskite microcavity sub-unit (at a coupling efficiency of about 82.7%) to establish the lasing action. An operational half-life (T) of 1.8 h (6.4 × 10 voltage pulses at 10 Hz) is achieved, outperforming the stability of electrically pumped organic lasers. The dual-cavity perovskite laser can be rapidly modulated at a bandwidth of 36.2 MHz, indicating its potential for data transmission and computational applications.
溶液法制备的半导体激光器有望应用于轻量化、可穿戴和可扩展的光电子领域。在溶液法制备激光器的增益介质中,金属卤化物钙钛矿因其在光泵浦下能够实现波长可调、低阈值激光发射而脱颖而出。尽管该领域取得了进展,但钙钛矿半导体的电驱动激光发射仍然是一个关键挑战。在此,我们展示了一种电驱动的钙钛矿激光器,它是通过将低阈值单晶钙钛矿微腔子单元与高功率微腔钙钛矿发光二极管(PeLED)子单元垂直集成而构建的。在脉冲电激发下,双腔钙钛矿器件的最低激光阈值为92 A/cm²(平均阈值:129 A/cm²,在空气中约22°C时),比最先进的电驱动有机激光器低一个数量级。这一成果的关键在于集成的双腔器件架构,它允许微腔PeLED子单元将定向发射光输入到单晶钙钛矿微腔子单元中(耦合效率约为82.7%),从而实现激光发射。该器件的工作半衰期(T)为1.8小时(在10 Hz频率下施加6.4×10⁶个电压脉冲),优于电泵浦有机激光器的稳定性。双腔钙钛矿激光器能够在36.2 MHz的带宽下进行快速调制,这表明它在数据传输和计算应用方面具有潜力。