Suppr超能文献

基于模型的认知神经科学。

Model-based cognitive neuroscience.

作者信息

Palmeri Thomas J, Love Bradley C, Turner Brandon M

机构信息

Vanderbilt University, United States.

University College London, United Kingdom.

出版信息

J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.

Abstract

This special issue explores the growing intersection between mathematical psychology and cognitive neuroscience. Mathematical psychology, and cognitive modeling more generally, has a rich history of formalizing and testing hypotheses about cognitive mechanisms within a mathematical and computational language, making exquisite predictions of how people perceive, learn, remember, and decide. Cognitive neuroscience aims to identify neural mechanisms associated with key aspects of cognition using techniques like neurophysiology, electrophysiology, and structural and functional brain imaging. These two come together in a powerful new approach called , which can both inform cognitive modeling and help to interpret neural measures. Cognitive models decompose complex behavior into representations and processes and these latent model states can be used to explain the modulation of brain states under different experimental conditions. Reciprocally, neural measures provide data that help constrain cognitive models and adjudicate between competing cognitive models that make similar predictions about behavior. As examples, brain measures are related to cognitive model parameters fitted to individual participant data, measures of brain dynamics are related to measures of model dynamics, model parameters are constrained by neural measures, model parameters or model states are used in statistical analyses of neural data, or neural and behavioral data are analyzed jointly within a hierarchical modeling framework. We provide an introduction to the field of model-based cognitive neuroscience and to the articles contained within this special issue.

摘要

本期特刊探讨了数学心理学与认知神经科学之间日益增长的交叉领域。数学心理学,以及更广泛的认知建模,在使用数学和计算语言对认知机制的假设进行形式化和测试方面有着丰富的历史,能够对人们如何感知、学习、记忆和决策做出精确预测。认知神经科学旨在使用神经生理学、电生理学以及结构和功能脑成像等技术,识别与认知关键方面相关的神经机制。这两者结合形成了一种强大的新方法,称为 ,它既可以为认知建模提供信息,又有助于解释神经测量结果。认知模型将复杂行为分解为表征和过程,这些潜在的模型状态可用于解释不同实验条件下脑状态的调制。反之,神经测量提供的数据有助于约束认知模型,并在对行为做出类似预测的相互竞争的认知模型之间进行裁决。例如,脑测量与拟合个体参与者数据的认知模型参数相关,脑动力学测量与模型动力学测量相关,模型参数受神经测量约束,模型参数或模型状态用于神经数据的统计分析,或者在分层建模框架内联合分析神经和行为数据。我们对基于模型的认知神经科学领域以及本期特刊中的文章进行了介绍。

相似文献

1
Model-based cognitive neuroscience.基于模型的认知神经科学。
J Math Psychol. 2017 Feb;76(Pt B):59-64. doi: 10.1016/j.jmp.2016.10.010. Epub 2016 Nov 23.
5
Toward a model-based cognitive neuroscience of mind wandering.迈向基于模型的思维游荡认知神经科学。
Neuroscience. 2015 Dec 3;310:290-305. doi: 10.1016/j.neuroscience.2015.09.053. Epub 2015 Sep 28.
6
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
8
Cognitive network neuroscience.认知网络神经科学
J Cogn Neurosci. 2015 Aug;27(8):1471-91. doi: 10.1162/jocn_a_00810. Epub 2015 Mar 24.

引用本文的文献

8
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.关联脉冲神经网络模型与决策扩散模型。
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.

本文引用的文献

1
Common Mechanisms in Infant and Adult Category Learning.婴儿和成人类别学习中的共同机制
Infancy. 2004 Mar;5(2):173-198. doi: 10.1207/s15327078in0502_4. Epub 2004 Mar 1.
2
Approaches to Analysis in Model-based Cognitive Neuroscience.基于模型的认知神经科学中的分析方法。
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
6
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS.关联累加器模型参数与神经动力学
J Math Psychol. 2017 Feb;76(B):156-171. doi: 10.1016/j.jmp.2016.07.001. Epub 2016 Aug 1.
9
Integrating Theoretical Models with Functional Neuroimaging.将理论模型与功能神经成像相结合。
J Math Psychol. 2017 Feb;76(B):80-93. doi: 10.1016/j.jmp.2016.06.008. Epub 2016 Jul 25.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验