Suppr超能文献

杂种落叶松幼树高度的全基因组选择。

Genomic selection of juvenile height across a single-generational gap in Douglas-fir.

机构信息

Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.

Scion (New Zealand Forest Research Institute Ltd.), 49 Sala Street, Whakarewarewa, Rotorua, 3046, New Zealand.

出版信息

Heredity (Edinb). 2019 Jun;122(6):848-863. doi: 10.1038/s41437-018-0172-0. Epub 2019 Jan 10.

Abstract

Here, we perform cross-generational GS analysis on coastal Douglas-fir (Pseudotsuga menziesii), reflecting trans-generational selective breeding application. A total of 1321 trees, representing 37 full-sib F families from 3 environments in British Columbia, Canada, were used as the training population for (1) EBVs (estimated breeding values) of juvenile height (HTJ) in the F generation predicting genomic EBVs of HTJ of 136 individuals in the F generation, (2) deregressed EBVs of F HTJ predicting deregressed genomic EBVs of F HTJ, (3) F mature height (HT35) predicting HTJ EBVs in F, and (4) deregressed F HT35 predicting genomic deregressed HTJ EBVs in F. Ridge regression best linear unbiased predictor (RR-BLUP), generalized ridge regression (GRR), and Bayes-B GS methods were used and compared to pedigree-based (ABLUP) predictions. GS accuracies for scenarios 1 (0.92, 0.91, and 0.91) and 3 (0.57, 0.56, and 0.58) were similar to their ABLUP counterparts (0.92 and 0.60, respectively) (using RR-BLUP, GRR, and Bayes-B). Results using deregressed values fell dramatically for both scenarios 2 and 4 which approached zero in many cases. Cross-generational GS validation of juvenile height in Douglas-fir produced predictive accuracies almost as high as that of ABLUP. Without capturing LD, GS cannot surpass the prediction of ABLUP. Here we tracked pedigree relatedness between training and validation sets. More markers or improved distribution of markers are required to capture LD in Douglas-fir. This is essential for accurate forward selection among siblings as markers that track pedigree are of little use for forward selection of individuals within controlled pollinated families.

摘要

在这里,我们对沿海道格拉斯冷杉(Pseudotsuga menziesii)进行跨世代 GS 分析,反映了跨世代的选择性育种应用。总共使用了 1321 棵树,代表来自加拿大不列颠哥伦比亚省 3 个环境的 37 个全同胞 F 家族,作为 F 代中预测 136 个个体 F 代中 HTJ 基因组 EBV 的幼龄高度(HTJ)的 EBV(估计育种值)的训练群体,(1)F HTJ 的去回归 EBV 预测 F HTJ 的去回归基因组 EBV,(2)F 成熟高度(HT35)预测 F 中的 HTJ EBV,以及(3)去回归 F HT35 预测 F 中的基因组去回归 HTJ EBV。岭回归最佳线性无偏预测器(RR-BLUP)、广义岭回归(GRR)和贝叶斯-B GS 方法被用于比较基于系谱的(ABLUP)预测。方案 1(0.92、0.91 和 0.91)和方案 3(0.57、0.56 和 0.58)的 GS 精度与它们的 ABLUP 对应物(分别为 0.92 和 0.60)相似(使用 RR-BLUP、GRR 和 Bayes-B)。方案 2 和方案 4 的去回归值的结果都急剧下降,在许多情况下接近零。在 Douglas-fir 中对幼龄高度进行跨世代 GS 验证产生的预测精度几乎与 ABLUP 一样高。如果不捕获 LD,则 GS 无法超越 ABLUP 的预测。在这里,我们跟踪了训练集和验证集之间的系谱相关性。需要更多的标记或改进标记的分布,以捕获 Douglas-fir 中的 LD。这对于在同胞中进行准确的正向选择至关重要,因为跟踪系谱的标记对于在受控授粉家族中个体的正向选择几乎没有用处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验